如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面A1ABB1是菱形,且垂直于底面ABC,∠A1AB=60°,E,F(xiàn)分別是AB1,BC的中點(diǎn).
(1)求證:直線EF∥平面A1ACC1
(2)在線段AB上確定一點(diǎn)G,使平面EFG⊥平面ABC,并給出證明.
考點(diǎn):平面與平面垂直的判定,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(1)連接A1C,A1E.由已知條件得EF∥A1C.由此能證明直線EF∥平面A1ACC1
(2)連接EG,F(xiàn)G.由已知得△A1AB是等邊三角形.由E是A1B的中點(diǎn),
BG
GA
=
1
3
,得EG⊥AB.由此能證明當(dāng)
BG
GA
=
1
3
時(shí),平面EFG⊥平面ABC,
解答: (1)證明:連接A1C,A1E.
∵側(cè)面A1ABB1是菱形,E是AB1的中點(diǎn),
∴E也是A1B的中點(diǎn),
又F是BC的中點(diǎn),∴EF∥A1C.
∵A1C?平面A1ACC1,EF?平面A1ACC1,
∴直線EF∥平面A1ACC1
(2)解:當(dāng)
BG
GA
=
1
3
時(shí),平面EFG⊥平面ABC,
證明如下:連接EG,F(xiàn)G.
∵側(cè)面A1ABB1是菱形,且∠A1AB=60°,
∴△A1AB是等邊三角形.
∵E是A1B的中點(diǎn),
BG
GA
=
1
3
,∴EG⊥AB.
∵平面A1ABB1⊥平面ABC,且平面A1ABB1∩平面ABC=AB,
∴EG⊥平面ABC.
又EG?平面EFG,∴平面EFG⊥平面ABC.
點(diǎn)評(píng):本題考查平面與平面平行的證明,考查使平面垂直的點(diǎn)的位置的確定,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知α為第二象限角,f(α)=
sin(5π-α)sin(
3
2
π+α)cos(
3
2
π-α)tan(-α-π)
sin(3π+α)tan(π-α)sin(-
π
2
-α)

(1)化簡(jiǎn)f(α)
(2)若cos(α-
3
2
π)=
1
3
,求f(α)的值
(3)若α=-1380°,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C過點(diǎn)A(1,
3
2
),兩焦點(diǎn)為F1(-
3
,0)、F2
3
,0),O是坐標(biāo)原點(diǎn),不經(jīng)過原點(diǎn)的直線l:y=kx+m與該橢圓交于兩個(gè)不同點(diǎn)P、Q,且直線OP、PQ、OQ的斜率依次成等比數(shù)列.
(1)求橢圓C的方程;     
(2)求直線l的斜率k;
(3)求△OPQ面積的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex(sinx-1)
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)當(dāng)x∈[-π,π]時(shí),求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)一個(gè)高為2的圓柱,底面周長(zhǎng)為2π,求該圓柱的表面積;
(2)一個(gè)圓錐的側(cè)面展開圖是面積為2π的半圓面,求該圓錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1所示的圖板中,O是F1F2的中點(diǎn),且|F1F2|=2.將一條長(zhǎng)為4的細(xì)繩兩端分別固定在F1,F(xiàn)2處.套上鉛筆,拉緊繩子,移動(dòng)筆尖,可畫出一個(gè)如圖2所示的橢圓軌跡г.

(Ⅰ)試求出圖2中橢圓г的一個(gè)標(biāo)準(zhǔn)方程;
(Ⅱ)若P為橢圓Γ上滿足PF2⊥F1F2的點(diǎn),那么是否存在與橢圓Γ交于兩點(diǎn)A、B的直線l,使得四邊形OPAB為平行四邊形?若存在,請(qǐng)基于(Ⅰ)的解答求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以原點(diǎn)O和A(4,2)為兩個(gè)頂點(diǎn)作等腰直角三角形OAB,∠B=90°,
(1)求與
OA
同向的單位向量的坐標(biāo)
(2)求B點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinxcosx-
3
cos2x.
(Ⅰ)求f(0)的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(2x+1)=x2-4x+2,則f(3-4x)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案