設(shè)
和
是兩個不重合的平面,給出下列命題:
①若
外一條直線
與
內(nèi)一條直線平行,則
;
②若
內(nèi)兩條相交直線分別平行于
內(nèi)的兩條直線 ,則
;
③設(shè)
,若
內(nèi)有一條直線垂直于
,則
;
④若直線
與平面
內(nèi)的無數(shù)條直線垂直,則
.
上面的命題中,真命題的序號是 ( )
試題分析:根據(jù)直線與平面平行的判定定理可知①是真命題;由平面與平面平行的判定定理可知是②真命題;若
,在
內(nèi)有一條直線垂直于交線
,不一定垂直平面
,故③時假命題;根據(jù)已知條件可知,這無數(shù)條直線是平行的,由直線與平面垂直的判定定理可得④是假命題.故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,三棱錐P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC, D是PB上一點,且CD⊥平面PAB.
(1)求證:AB⊥平面PCB;
(2)求異面直線AP與BC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖四棱錐
中,底面
是平行四邊形,
平面
,垂足為
,
在
上且
,
,
,
是
的中點,四面體
的體積為
.
(1)求二面角
的正切值;
(2)求直線
到平面
所成角的正弦值;
(3)在棱
上是否存在一點
,使異面直線
與
所成的角為
,若存在,確定點
的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,長方體
中
,
為
中點.
(1)求證:
;
(2)在棱上是否存在一點
,使得
平面
?若存在,求
的長;若不存在,說明理由;
(3)若二面角
的大小為
,求
的長.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在四棱柱
中,已知平面
,且
.
(1)求證:
;
(2)在棱BC上取一點E,使得
∥平面
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在三棱柱
中,
.
(1)求證:
;
(2)若
,在棱
上確定一點P, 使二面角
的平面角的余弦值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知在四棱錐
中,底面
是矩形,
平面
,
、
分別是
、
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)若
與平面
所成角為
,且
,求點
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知是兩條不同的直線,是兩個不同的平面,有下列五個命題
①
②
③
、
⑤
其中真命題的序號是__________________________(把所有真命題的序號都填上)
查看答案和解析>>