如果實數(shù)x,y滿足(x-3)2+(y-3)2=6.求:
(1)
y
x
的最大值與最小值;
(2)x+y的最大值與最小值;
(3)
(x-2)2+y2
的最大值與最小值.
考點:圓方程的綜合應(yīng)用
專題:綜合題,直線與圓
分析:(1)設(shè)k=
y
x
,則y=kx,由圓心(3,3)到直線的距離d=
|3k-3|
k2+1
=
6
,可得k=3±2
2
,即可求出)
y
x
的最大值與最小值;
(2)設(shè)x+y=m,即x+y-m=0,由圓心(3,3)到直線的距離d=
|6-m|
2
=
6
,可得m=6±2
3
,即可求出x+y的最大值與最小值;
(3)求出(2,0)與圓心(3,3)的距離,即可求出
(x-2)2+y2
的最大值與最小值.
解答: 解:(1)設(shè)k=
y
x
,則y=kx,
由圓心(3,3)到直線的距離d=
|3k-3|
k2+1
=
6
,可得k=3±2
2
,
y
x
的最大值與最小值分別為3+2
2
;3-2
2

(2)設(shè)x+y=m,即x+y-m=0,
由圓心(3,3)到直線的距離d=
|6-m|
2
=
6
,可得m=6±2
3
,
∴x+y的最大值與最小值分別為6+2
3
;6-2
3
;
(2)(2,0)與圓心(3,3)的距離為
1+9
=
10
,
(x-2)2+y2
的最大值與最小值分別為
10
+
6
10
-
6
點評:本題考查圓方程的綜合應(yīng)用,考查直線與圓的位置關(guān)系,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

命題P:函數(shù)f(x)=(
1
3
)x
-sinx至少有兩個零點,對于命題P的否定,下列說法正確的是(  )
A、命題P的否定:函數(shù)f(x)=(
1
3
)x-sinx
至多有兩個零點,且命題P的否定是真命題
B、命題P的否定:函數(shù)f(x)=(
1
3
)x-sinx
至多有一個零點,且命題P的否定是真命題
C、命題P的否定:函數(shù)f(x)=(
1
3
)x-sinx
至多有兩個零點,且命題P的否定是假命題
D、命題P的否定:函數(shù)f(x)=(
1
3
)x-sinx
至多有一個零點,且命題P的否定是假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從某校高三年級學生中抽取40名學生,將他們高中學業(yè)水平考試的數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖的頻率分布直方圖.
(1)若該校高三年級有640人,試估計這次學業(yè)水平考試的數(shù)學成績不低于60分的人數(shù)及相應(yīng)的平均分;
(2)若從[40,50)與[90,100]這兩個分數(shù)段內(nèi)的學生中隨機選取兩名學生,求這兩名學生成績之差的絕對值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ex
x
-a(x2-2x-3),其中a為參數(shù),且a∈R.
(Ⅰ)若a=-1,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若對于任意的x∈(0,4],都有f(x)≥0恒成立,求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(ax2-
1
x
9的展開式中常項等于84,則實數(shù)a=
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

地球北緯45°圈上有A、B兩點,點A在東經(jīng)30°處,點B在東經(jīng)120°處,如圖,若地球半徑為R,則A、B兩點在緯度圈上的劣弧長為( 。
A、
2
πR
B、
2
4
πR
C、
2
2
π
R
D、
2
6
πR

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a 
1
2
+a-
1
2
=3(a>0),求
a
3
2
-a-
3
2
a
1
2
-a-
1
2
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

成等差數(shù)列的三個數(shù)的和為12,第二數(shù)與第三數(shù)之積為24,求這三個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將下列復數(shù)的代數(shù)形式化為三角形式:
(1)2+i;(2)-2+i;(3)-2-i;(4)-2+i; 
(5)1;(6)-1;(7)i;(8)-i.

查看答案和解析>>

同步練習冊答案