【題目】如圖,是邊長為3的正方形,平面,,且,.
(1)試在線段上確定一點(diǎn)的位置,使得平面;
(2)求二面角的余弦值.
【答案】(1)為的一個(gè)三等分點(diǎn)(靠近點(diǎn));(2).
【解析】
試題分析:(1)取的三等分點(diǎn)(靠近點(diǎn)),則有,過作交于,證明,得所以四邊形為平行四邊形,可知平面;(2)以分別為軸建立空間直角坐標(biāo)系,求得平面的法向量為,求得平面的法向量為,因?yàn)槎娼?/span>為鈍二面角,可得.
試題解析:
(1)取的三等分點(diǎn)(靠近點(diǎn)),則有,過作交于,由平面,,可知平面,∴,
∴,且,
所以四邊形為平行四邊形,可知平面,
∵,∴為的一個(gè)三等分點(diǎn)(靠近點(diǎn));
(2)如圖建立空間直角坐標(biāo)系:
則,,
設(shè)平面的法向量為,由,可得.
平面的法向量為,由可得,
因?yàn)槎娼?/span>為鈍二面角,可得,
所以二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)據(jù)是鄭州市普通職工個(gè)人的年收入,若這個(gè)數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上世界首富的年收入,則這個(gè)數(shù)據(jù)中,下列說法正確的是( )
A. 年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
B. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大
C. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
D. 年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某山區(qū)外圍有兩條相互垂直的直線型公路,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路和山區(qū)邊界的直線型公路.記兩條相互垂直的公路為,山區(qū)邊界曲線為.計(jì)劃修建的公路為,如圖所示,為的兩個(gè)端點(diǎn),測得點(diǎn)到的距離分別為5千米和40千米,點(diǎn)到的距離分別為20千米和2.5千米,以所在直線分別為軸,建立平面直角坐標(biāo)系.假設(shè)曲線符合函數(shù)(其中為常數(shù))模型.
(1)求的值;
(2)設(shè)公路與曲線相切于點(diǎn),的橫坐標(biāo)為.
①請(qǐng)寫出公路長度的函數(shù)解析式,并寫出其定義域;
②當(dāng)為何值時(shí),公路的長度最短?求出最短長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點(diǎn)是直線上的一動(dòng)點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為.
(1)當(dāng)切線的長度為時(shí),求點(diǎn)的坐標(biāo);
(2)若的外接圓為圓,試問:當(dāng)在直線上運(yùn)動(dòng)時(shí),圓是否過定點(diǎn)?若存在,求出所有的定點(diǎn)的坐標(biāo);若不存在,說明理由.
(3)求線段長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】校高一(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖.
(1)求分?jǐn)?shù)在的頻率及全班人數(shù);
(2)求分?jǐn)?shù)在之間的頻數(shù),并計(jì)算頻率分布直方圖中間矩形的高;
(3)若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圍建一個(gè)面積為360的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長度為(單位:),修建此矩形場地圍墻的總費(fèi)用為(單位:元)
(1)將表示為的函數(shù);
(2)試確定,使修建此矩形場地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)有學(xué)生 人,其中一年級(jí) 人,二、三年級(jí)各 人,現(xiàn)要用抽樣方法抽取 人形成樣本,將學(xué)生按一、二、三年級(jí)依次統(tǒng)一編號(hào)為 , , , ,如果抽得號(hào)碼有下列四種情況:
①, , , , , , , , , ;
②, , , , , , , , , ;
③, , , , , , , , , ;
④, , , , , , , , , ;
其中可能是由分層抽樣得到,而不可能是由系統(tǒng)抽樣得到的一組號(hào)碼為
A. ①② B. ②③ C. ①③ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的奇數(shù)項(xiàng)是公差為的等差數(shù)列,偶數(shù)項(xiàng)是公差為的等差數(shù)列, 是數(shù)列的前項(xiàng)和,
(1)若,求;
(2)已知,且對(duì)任意的,有恒成立,求證:數(shù)列是等差數(shù)列;
(3)若,且存在正整數(shù),使得,求當(dāng)最大時(shí),數(shù)列的通項(xiàng)公式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com