分析 ①利用正弦定理即可得出.
②利用余弦定理即可得出.
解答 解:①∵a=2bsinA,由正弦定理可得:sinA=2sinBsinA,sinA≠0,∴sinB=$\frac{1}{2}$,
∵△ABC是銳角三角形,∴B=B=30°.
②由余弦定理可得:$^{2}=(3\sqrt{3})^{2}+{5}^{2}$-2×$3\sqrt{3}×5×cos3{0}^{°}$
=7,
解得$b=\sqrt{7}$.
點(diǎn)評(píng) 本題考查了正弦定理余弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(-∞\;,\;ln(\sqrt{2}+1)]$ | B. | $[ln(\sqrt{2}-1)\;,\;+∞)$ | ||
C. | $[ln(\sqrt{2}-1)\;,\;ln(\sqrt{2}+1)]$ | D. | $(-∞\;,\;ln(\sqrt{2}-1)]∪$$[ln(\sqrt{2}+1)\;,\;+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{7}{3}$ | C. | -$\frac{7}{3}$ | D. | -$\frac{3}{4}$. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{13}}}{5}$ | B. | $\sqrt{13}$ | C. | $\frac{{\sqrt{65}}}{5}$ | D. | $\sqrt{65}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“若x2-3x-4=0,則x=4”的逆否命題為“若x≠4,則x2-3x-4=0” | |
B. | 已知命題p“若m>0,則方程x2+x-m=0有實(shí)根”,則命題p的否定¬p為真命題 | |
C. | “x=4”是“x2-3x-4=0”的充分不必要條件 | |
D. | 命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2=0,則m≠0或n≠0” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0,1} | B. | {-1,0,1} | C. | {0,1,5} | D. | {-1,1} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com