分析 (1)寫出通項公式,根據(jù)第6項為常數(shù)項,則指數(shù)為0,解得即可,
(2)含x2項得r=$\frac{1}{2}$(n-6)=2,即可求出答案,
(3)令$\frac{10-2r}{3}$=k,(k∈Z),則10-2r=3k,即r=5-$\frac{3}{2}$k,解得即可
解答 解:(1)通項公式為Tr+1=Cnr(-$\frac{1}{2}$)r${x}^{\frac{n-2r}{3}}$,
∵第6項為常數(shù)項,
∴r=5時,有$\frac{n-2r}{3}$=0,即n=10,
(2)含x2項得r=$\frac{1}{2}$(n-6)=2,
∴所求的系數(shù)為C102(-$\frac{1}{2}$)2=$\frac{45}{4}$,
(3)根據(jù)通項公式,由題意得$\left\{\begin{array}{l}{\frac{10-2x}{3}∈Z}\\{0≤x≤10}\\{x∈N}\end{array}\right.$,
令$\frac{10-2r}{3}$=k,(k∈Z),則10-2r=3k,即r=5-$\frac{3}{2}$k,
∵r∈N,
∴k應為偶數(shù),
∴k可取2,0,-2,即r可取2,5,8,
∴第3項,第6項與第9項為有理項.
點評 本題考查了二項式系數(shù)以及展開式定理,掌握通項公式是關鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $\frac{1}{6}$ | C. | $\frac{3}{10}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,+∞) | B. | (-∞,2] | C. | (-∞,-1)和(1,2) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com