某種產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:
廣告費用x(萬元) 1 2 3 4 5
銷售額y(萬元) 10 12 15 18 20
(1)利用所給數(shù)據(jù)求廣告費用x與銷售額y之間的線性回歸方程y=a+bx;
(2)預(yù)計在今后的銷售中,銷售額與廣告費用還服從(1)中的關(guān)系,如果廣告費用為6萬元,請預(yù)測銷售額為多少萬元?
附:其中b=
x1y1+x2y2+…+xnyn-n
.
x
.
y
x12+x22+…+xn2-n(
.
x
)2
,a=
.
y
-b
.
x
考點:線性回歸方程
專題:計算題,概率與統(tǒng)計
分析:(1)利用公式計算回歸直線方程的系數(shù),可得回歸直線方程;
(2)代入x=6計算y的值,可得預(yù)報銷售額.
解答: 解:(1)
.
x
=
1+2+3+4+5
5
,
.
y
=
10+12+15+18+20
5
=15;
∴b=2.6,a=7.2,
則廣告費用x與銷售額y之間的線性回歸方程y=2.6x+7.2,
(2)當(dāng)廣告費用為6萬元時,由上線性回歸方程預(yù)測銷售額為2.6×6+7.2=22.8萬元.
點評:本題考查了線性回歸方程的求法及利用回歸直線方程計算預(yù)報變量,熟練掌握最小二乘法求回歸系數(shù)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足f(x+2)=f(x),當(dāng)-1<x≤1 時,f(x)=x3 則函數(shù)y=f(x)+log
1
5
|x|的零點的個數(shù)( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,點列{An}滿足:|
OA1
|=1,|
OAi+1
|=2|
OAi
|+1,Ai均在坐標(biāo)軸上(i∈N*),則向量
OA1
+
OA2
+…+
OA2014
=( 。
A、(22014-1,0)
B、(22016-1,22015-1)
C、(
22014-1
5
,
3(22014-1)
5
D、(
22016-1
5
22015-3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(2x+b-1)(a>0且a≠1)的部分圖象如圖所示,則滿足a,b關(guān)系是( 。
A、0<
1
a
<b<1
B、0<b<
1
a
<1
C、0<
1
b
<a<1
D、0<
1
a
1
b
<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1-2cos2
ωx
2
,1),
b
=(-1,cos(ωx+
π
3
)),ω>0,點A、B為函數(shù)f(x)=
a
b
的相鄰兩個零點,|AB|=π.
(Ⅰ) 求ω的值;
(Ⅱ) 若f(x)=
3
3
,x∈(0,
π
2
),求sinx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x+2,(x≤-1)
x2,(-1<x<2)
2x,(x≥2)

(1)若f(x)=3,求x的值;
(2)若方程f(x)=m有三個不相等的實根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知長方形ABCD中,AB=2,AD=1,M為CD的中點.將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)若點E是線段BD的中點,求二面角E-AM-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin
x
4
cos
x
4
+cos2
x
4

(1)若f(x)=1,求cos(
3
-x)的值
(2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c且滿足acosC+
1
2
c=b,求f(2B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且滿足a1=
1
2
,an=-2SnSn-1(n≥2).
(1)求S1,S2,S3;
(2)求數(shù)列{an}的通項公式;
(3)求證:S12+S22+S32+…+Sn2
1
2
-
1
4n

查看答案和解析>>

同步練習(xí)冊答案