【題目】如圖所示四棱錐中,底面,四邊形中,,,

求四棱錐的體積;

求證:平面

在棱上是否存在點異于點,使得平面,若存在,求的值;若不存在,說明理由.

【答案】(1)4;(2)見解析;(3)不存在.

【解析】

利用四邊形是直角梯形,求出,結(jié)合底面,利用棱錐的體積公式求解即可求;先證明,結(jié)合,利用線面垂直的判定定理可得平面用反證法證明,假設(shè)存在點異于點使得平面證明平面平面,與平面與平面相交相矛盾,從而可得結(jié)論.

顯然四邊形ABCD是直角梯形,

底面

平面ABCD,平面ABCD,

在直角梯形ABCD中,

,,即

,

平面;

不存在,下面用反證法進行證明

假設(shè)存在點異于點使得平面PAD

,且平面PAD,

平面PAD,

平面PAD

,

平面平面PAD

而平面PBC與平面PAD相交,得出矛盾.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某種蔬菜從1月1日起開始上市,通過市場調(diào)查,得到該蔬菜種植成本(單位:元/)與上市時間(單位:10天)的數(shù)據(jù)如下表:

時間

5

11

25

種植成本

15

10.8

15

(1)根據(jù)上表數(shù)據(jù),從下列函數(shù):,,中(其中),選取一個合適的函數(shù)模型描述該蔬菜種植成本與上市時間的變化關(guān)系;

(2)利用你選取的函數(shù)模型,求該蔬菜種植成本最低時的上市時間及最低種植成本.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正方形和四邊形所在的平面互相垂直,,.

求證:(1) 平面;

(2) 平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校要對如圖所示的5個區(qū)域進行綠化(種花),現(xiàn)有4種不同顏色的花供選擇,要求相鄰區(qū)域不能種同一種顏色的花,則共有___________種不同的種花方法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等差數(shù)列{an}的前n項和為Sn . 已知a1=10,a2為整數(shù),且Sn≤S4
(1)求{an}的通項公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C滿足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+ ,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對的邊,在下列不等式一定成立的是(
A.bc(b+c)>8
B.ab(a+b)>16
C.6≤abc≤12
D.12≤abc≤24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD,底面是以O(shè)為中心的菱形,PO⊥底面ABCD,AB=2,∠BAD= ,M為BC上的一點,且BM= ,MP⊥AP.

(1)求PO的長;
(2)求二面角A﹣PM﹣C的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記max{x,y}= ,min{x,y}= ,設(shè) , 為平面向量,則(
A.min{| + |,| |}≤min{| |,| |}
B.min{| + |,| |}≥min{| |,| |}
C.max{| + |2 , | |2}≤| |2+| |2
D.max{| + |2 , | |2}≥| |2+| |2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次抽樣調(diào)查中測得樣本的6組數(shù)據(jù),得到一個變量關(guān)于的回歸方程模型,其對應(yīng)的數(shù)值如下表:

2

3

4

5

6

7

(1)請用相關(guān)系數(shù)加以說明之間存在線性相關(guān)關(guān)系(當時,說明之間具有線性相關(guān)關(guān)系);

(2)根據(jù)(1)的判斷結(jié)果,建立關(guān)于的回歸方程并預(yù)測當時,對應(yīng)的值為多少(精確到).

附參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:

,,相關(guān)系數(shù)公式為:.

參考數(shù)據(jù):

,,.

查看答案和解析>>

同步練習冊答案