12.已知集合A,B滿足,集合A={x|x<a},B={x||x-2|≤2,x∈R},若已知“x∈A”是“x∈B”的必要不充分條件,則a的取值范圍是(4,+∞).

分析 解出關于B的不等式,結合集合的包含關系判斷即可.

解答 解:A={x|x<a},B={x||x-2|≤2,x∈R}={x|0≤x≤4},
若已知“x∈A”是“x∈B”的必要不充分條件,
即[0,4]⊆(-∞,a),故a>4,
故答案為:(4,+∞).

點評 本題考查了充分必要條件,考查集合的包含關系,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.求值:
(1)${({0.064})^{-\frac{1}{3}}}-{({-\frac{5}{9}})^0}+{[{{{({-2})}^3}}]^{-\frac{4}{3}}}+{16^{-0.75}}$;
(2)設3x=4y=36,求$\frac{2}{x}+\frac{1}{y}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若點(3,2)在函數(shù)f(x)=log5(3x-m)的圖象上,則函數(shù)y=-x${\;}^{\frac{m}{3}}$的最大值為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知命題“?x∈R,3x2+ax+$\frac{1}{2}$a≤0”是假命題,則實數(shù)a的取值范圍是(0,6).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若集合{1,2,3}={a,b,c},則a+b+c=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列寫法正確的是(  )
A.∅∈{0}B.∅⊆{0}C.0?∅D.∅∉∁R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知集合A={9,2-x,x2+1},集合B={1,2x2},若A∩B={2},則x的值為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知a,b,c都是正數(shù),
(1)若a+c=1,試比較a3+a2c+ab2+b2c與a2b+abc的大小;
(2)若a2+b2+c2=1,求證:$\frac{1}{{a}^{2}}+\frac{1}{^{2}}+\frac{1}{{c}^{2}}$-$\frac{2({a}^{3}+^{3}+{c}^{3})}{abc}$≥3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.直線l過點P(0,2)且與直線2x-y=0平行,則直線l在x軸上的截距為-1.

查看答案和解析>>

同步練習冊答案