精英家教網 > 高中數學 > 題目詳情
15.已知a∈R,命題“?x∈(0,+∞),等式lnx=a成立”的否定形式是(  )
A.?x∈(0,+∞),等式lnx=a不成立B.?x∈(-∞,0),等式lnx=a不成立
C.?x0∈(0,+∞),等式lnx0=a不成立D.?x0∈(-∞,0),等式lnx0=a不成立

分析 根據全稱命題的否定是特稱命題進行求解判斷.

解答 解:命題是全稱命題,則命題的否定是:
?x0∈(0,+∞),等式lnx0=a不成立,
故選:C

點評 本題主要考查含有量詞的命題的否定,比較基礎.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

5.已知Rt△ABC的周長為定值l,則它的面積最大值為$\frac{3-2\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知函數f(x)=Asin(ωx+φ)+m(A>0,ω>0,|φ|<$\frac{π}{2}$)最小正周期為$\frac{π}{2}$,最大值為4,最小值為0,圖象的一條對稱軸為x=$\frac{π}{3}$
(1)求函數f(x)的解析式
(2)求函數f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.如圖所示的程序框圖所表示的算法功能是輸出( 。
A.使1×2×4×6×…×n≥2017成立的最小整數n
B.使1×2×4×6×…×n≥2017成立的最大整數n
C.使1×2×4×6×…×n≥2017成立的最小整數n+2
D.使1×2×4×6×…×n≥2017成立的最大整數n+2

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.把數列{2n+1}依次按一項、二項、三項、四項循環(huán)分為(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),…在第100個括號內的最后一個數字為501.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.設函數f(x)=2$\sqrt{3}$sin(2ωx+$\frac{π}{3}$)-4cos2ωx+3(0<ω<2),且y=f(x)的圖象的一條對稱軸為x=$\frac{π}{6}$.
(1)求ω的值并求f(x)的最小值;
(2)△ABC中,a,b,c分別為△ABC的內角A,B,C的對邊,且a=1,S△ABC=$\frac{\sqrt{3}}{4}$,f(A)=2,求△ABC的周長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.如圖所示,正三角形ABC的外接圓半徑為2,圓心為O,PB=PC=2,D為AP上一點,AD=2DP,點D在平面ABC內的射影為圓心O.
(Ⅰ)求證:DO∥平面PBC;
(Ⅱ)求三棱錐O-PBC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.用數學歸納法證明:1+3+5+…+(2n-1)=n2(n∈N+

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.已知向量$\overrightarrow a=(1,m)$,$\overrightarrow b=(-1,2m+1)$,且$\overrightarrow a∥\overrightarrow b$,則m=-$\frac{1}{3}$.

查看答案和解析>>

同步練習冊答案