5.給出定義:若m-$\frac{1}{2}$<x≤m+$\frac{1}{2}$(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m,設(shè)函數(shù)f(x)=x-{x},二次函數(shù)g(x)=ax2+bx,若函數(shù)y=f(x)與y=g(x)的圖象有且只有一個公共點,則a,b的取值不可能是( 。
A.a=-4,b=1B.a=-2,b=-1C.a=4,b=-1D.a=5,b=1

分析 首先判斷函數(shù)f(x)的值域與奇偶性,結(jié)合函數(shù)圖形與各選項圖形來判斷交點個數(shù).

解答 解:令x=m+t,t∈(-$\frac{1}{2}$,$\frac{1}{2}$],
∴f(x)=x-{x}=t∈(-$\frac{1}{2}$,$\frac{1}{2}$],則函數(shù)f(x)的值域為(-$\frac{1}{2}$,$\frac{1}{2}$],
又f(-x)=-x-{-x}=-x+{x}=-f(x)
∴f(x)為奇函數(shù),圖形如圖:
當a=-2,b=-1時,拋物線g(x)=-2x2-x的對稱軸分成為x=-$\frac{1}{2}$,
而g(-$\frac{1}{2}$)=-2×$(-\frac{1}{2})^{2}$-$(-\frac{1}{2})$=0,圖象與f(x)的圖象有兩個交點,與題意不相符.
故選:B

點評 本題主要考查了函數(shù)的基本性質(zhì),以及數(shù)形結(jié)合思想的應用,屬中等題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知圓C:x2+y2-2x+4y-4=0與直線l:y=x+b相交于不同的兩點A、B.
(1)求實數(shù)b的取值范圍;
(2)是否存在直線l,使得OA⊥OB(其中O為坐標原點),若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設(shè)集合M={1,2},則滿足條件M∪N={1,2,6}的集合N的個數(shù)是(  )
A.1B.3C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù).命題q:?x∈[$\frac{1}{2}$,2],x+$\frac{1}{x}$>c.如果p∨q為真命題,p∧q為假命題,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.過點P(1,1)作直線l,與兩坐標軸相交所得三角形面積為4,則直線l有(  )
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.對于函數(shù)f(x)(x∈D),若存在正常數(shù)T,使得對任意的x∈D,都有f(x+T)≥f(x)成立,我們稱函數(shù)f(x)為“T同比不減函數(shù)”.
(1)求證:對任意正常數(shù)T,f(x)=x2都不是“T同比不減函數(shù)”;
(2)若函數(shù)f(x)=kx+sinx是“$\frac{π}{2}$同比不減函數(shù)”,求k的取值范圍;
(3)是否存在正常數(shù)T,使得函數(shù)f(x)=x+|x-1|-|x+1|為“T同比不減函數(shù)”;若存在,求T的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知圓C:x2+y2+2kx+2y+k2=0(k∈R)和定點P(1,-1),若過P點可以作兩條直線與圓C相切,則k的取值范圍是(0,+∞)∪(-∞,-2)..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足:f(x)+g(x)=ex,給出如下結(jié)論:
①f(x)=$\frac{{{e^x}-{e^{-x}}}}{2}$且0<f(1)<g(2);
②?x∈R,總有[g(x)]2-[f(x)]2=1;
③?x∈R,總有f(-x)g(-x)+f(x)g(x)=0;
④?x0∈R,使得f(2x0)>2f(x0)g(x0).
其中所有正確結(jié)論的序號是(  )
A.①②③B.②③C.①③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形的頂點)處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗,一株該種作物的年收獲量Y(單位:kg)與它的“相近”作物株數(shù)X之間的關(guān)系如表所示:
X1234
Y51484542
這里,兩株作物“相近”是指它們之間的直線距離不超過1米.
(1)完成下表,并求所種作物的平均年收獲量:
Y51484542
頻數(shù)    
(2)在所種年收獲量為51或48的作物中隨機選取兩株求收獲量之和,收獲量之和為t的概率.

查看答案和解析>>

同步練習冊答案