分析 由橢圓方程求出橢圓的長軸長及焦距,在焦點三角形中利用余弦定理及基本不等式求得答案.
解答 解:由橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$,得a2=9,∴a=3,2a=6.
b2=4,c2=a2-b2=5,
則|PF1|+|PF2|=6,
∴cos∠F1PF2=$\frac{|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}-|{F}_{1}{F}_{2}{|}^{2}}{2|P{F}_{1}||P{F}_{2}|}$=$\frac{(|P{F}_{1}|+|P{F}_{2}|)^{2}-2|P{F}_{1}||P{F}_{2}|-4{c}^{2}}{2|P{F}_{1}||P{F}_{2}|}$
=$\frac{4^{2}}{2|P{F}_{1}||P{F}_{2}|}-1$$≥\frac{16}{2×(\frac{2a}{2})^{2}}-1$=$\frac{16}{18}-1=-\frac{1}{9}$,
當且僅當|PF1|=|PF2|,即P為橢圓短軸的兩個端點時∠F1PF2最大,
cos∠F1PF2=$-\frac{1}{9}$,此時P(0,±2).
點評 本題考查橢圓的簡單性質(zhì),考查了焦點三角形中余弦定理的應用,訓練了利用基本不等式求最值,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [4,+∞) | B. | (0,$\frac{5}{2}$) | C. | [$\frac{5}{2}$,4] | D. | [$\frac{5}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①④ | B. | ①② | C. | ②④ | D. | ③④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com