【題目】已知數(shù)列{an}的前n項和為Sn=3n﹣1.
(1)求a1 , a2 , a3的值;
(2)求數(shù)列{an}的通項公式;
(3)求數(shù)列{nan}的前n項和Tn .
【答案】
(1)解:∵Sn=3n﹣1,
∴a1=3﹣1=2,
a2=S2﹣S1=8﹣2=6,
a3=S3﹣S2=26﹣8=18;
(2)解:∵Sn=3n﹣1,
∴當(dāng)n≥2時,Sn﹣1=3n﹣1﹣1,
兩式相減得:an=23n﹣1,
又∵a1=2滿足上式,
∴an=23n﹣1
(3)解:由(2)可知nan=2n3n﹣1,
∴Tn=230+43+632+…+2n3n﹣1,
3Tn=23+432+…+2(n﹣1)3n﹣1+2n3n,
兩式相減得:﹣2Tn=2+23+232+…+23n﹣1﹣2n3n,
∴Tn=n3n﹣(1+3+32+…+3n﹣1)
=n3n﹣
= + 3n
【解析】(1)通過Sn=3n﹣1,直接代入計算即可;(2)通過Sn=3n﹣1與Sn﹣1=3n﹣1﹣1作差,整理即得結(jié)論;(3)通過(2)可知nan=2n3n﹣1 , 進而利用錯位相減法計算計算即得結(jié)論.
【考點精析】認(rèn)真審題,首先需要了解數(shù)列的前n項和(數(shù)列{an}的前n項和sn與通項an的關(guān)系),還要掌握數(shù)列的通項公式(如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,底面是邊長為的菱形, ,四邊形是矩形,平面平面, , 是的中點.
(1)求證: 平面;
(2)求直線與平面所成角的正弦值;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線與圓交于M、N兩點,且M、N關(guān)于直線對稱.
(1)求m,k的值;
(2)若直線與圓C交P,Q兩點,是否存在實數(shù)a使得OP⊥OQ,如果存在,求出a的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,底面為矩形, 底面, ,
為中點.
(Ⅰ)在圖中作出平面與的交點,并指出點所在位置(不要求給出理由);
(Ⅱ)在線段上是否存在一點,使得直線與平面所成角的正弦值為,若存在,請說明點的位置;若不存在,請說明理由;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自點A(-3,3)發(fā)出的光線L射到x軸上,被x軸反射,其反射光線所在直線與圓x2+y2-4x-4y+7=0相切,求光線L所在直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,l1,l2是通過某城市開發(fā)區(qū)中心O的兩條南北和東西走向的街道,連結(jié)M、N兩地之間的鐵路線是圓心在l2上的一段圓。酎cM在點O正北方向,且|MO|=3 km,點N到l1,l2的距離分別為4 km和5 km.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求鐵路線所在圓弧的方程;
(2)若該城市的某中學(xué)擬在點O正東方向選址建分校,考慮環(huán)境問題,要求校址到點O的距離大于4 km,并且鐵路線上任意一點到校址的距離不能少于km,求該校址距點O的最近距離.(注:校址視為一個點)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點為橢圓的左焦點,直線被橢圓截得弦長為.
(1)求橢圓的方程;
(2)圓與橢圓交于兩點, 為線段上任意一點,直線交橢圓于兩點為圓的直徑,且直線的斜率大于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈A,且A={x|a﹣1<x<a+1},命題q:x∈B,且B={x|x2﹣4x+3≥0}
(Ⅰ)若A∩B=,A∪B=R,求實數(shù)a的值;
(Ⅱ)若p是q的充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某漁船在漁港O的南偏東60°方向,距離漁港約160海里的B處出現(xiàn)險情,此時在漁港的正上方恰好有一架海事巡邏飛機A接到漁船的求救信號,海事巡邏飛機迅速將情況通知了在C處的漁政船并要求其迅速趕往出事地點施救.若海事巡邏飛機測得漁船B的俯角為68.20°,測得漁政船C的俯角為63.43°,且漁政船位于漁船的北偏東60°方向上.
(Ⅰ)計算漁政船C與漁港O的距離;
(Ⅱ)若漁政船以每小時25海里的速度直線行駛,能否在3小時內(nèi)趕到出事地點?
(參考數(shù)據(jù):sin68.20°≈0.93,tan68.20°≈2.50,shin63.43°≈0.90,tan63.43°≈2.00, ≈3.62, ≈3.61)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com