【題目】如圖,在多面體中,底面
是邊長為
的菱形,
,四邊形
是矩形,平面
平面
,
,
是
的中點.
(1)求證: 平面
;
(2)求直線與平面
所成角的正弦值;
(3)求二面角的大小.
【答案】(1)見解析;(2);(3)
.
【解析】試題分析:(1)由平面 平面
,及
,得
平面
(平面與平面垂直的性質);(2)建立適當?shù)目臻g直角坐標系,求得平面
的法向量的坐標及
,可得
與平面
所成角的夾角的正弦值;(3)由(2)的空間直角坐標,可求得
的法向量
,平面
的法向量
,得
,由二面角為銳角,得所求二面角的值。
(1)證明:因為四邊形是菱形,所以
.
因為平面平面
,且四邊形
是矩形,所以
平面
,
又因為平面
,所以
.
因為,所以
平面
.
(2)設,取
的中點
,連接
,
因為四邊形是矩形,
分別為
,
的中點,所以
,
又因為平面
,所以
平面
,
由,得
兩兩垂直,所以以
為原點,
所在直線分別為
軸,
軸,
軸,如圖建立空間直角坐標系.
因為底面是邊長為
的菱形,
,
,
所以.
因為平面
,所以平面
的法向量
.
設直線與平面
所成角為
,由
,得
,
所以直線與平面
所成角的正弦值為
.
(3)由(2)得, ,
,
設平面的法向量為
,
所以即
令,得
,由
平面
,得平面
的法向量為
,
則,
由圖可知二面角為銳角,
所以二面角的大小為
.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知AB丄平面BCD,M、N分別是AC、AD的中點,BC 丄 CD.
(1)求證:MN//平面BCD;
(2)若AB=1,BC=,求直線AC與平面BCD所成的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從參加高一年級期中考試的學生中抽出60名學生,將其數(shù)學成績(均為整數(shù))分成六段[40,50),[50,60)…,[80,90),[90,100],然后畫出如圖所示部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求第四小組的頻率,并補全這個頻率分布直方圖;
(2)估計這次考試的及格率(60分及60分以上為及格)和平均分;
(3)把從[80,90)分數(shù)段選取的最高分的兩人組成B組,[90,100]分數(shù)段的學生組成C組,現(xiàn)從B,C兩組中選兩人參加科普知識競賽,求這兩個學生都來自C組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】余江人熱情好客,凡逢喜事,一定要擺上酒宴,請親朋好友、同事高鄰來助興慶賀.歡度佳節(jié),迎親嫁女,喬遷新居,學業(yè)有成,仕途風順,添丁加口,朋友相聚,都要以酒示意,借酒表達內心的歡喜.而凡有酒宴,一定要劃拳,劃拳是余江酒文化的特色.余江人劃拳注重禮節(jié),形式多樣;講究規(guī)矩,蘊含著濃厚的傳統(tǒng)文化和淳樸的民俗特色.在禮節(jié)上,講究“尊老尚賢敬遠客”一般是東道主自己或委托桌上一位酒量好的劃拳高手來“做關”,——就是依次陪桌上會劃拳的劃一年數(shù)十二拳(也有半年數(shù)六拳).十二拳之后晚輩還要敬長輩一杯酒.
再一次家族宴上,小明先陪他的叔叔猜拳12下,最后他還要敬他叔叔一杯,規(guī)則如下:前兩拳只有小明猜叔贏叔叔,叔叔才會喝下這杯敬酒,且小明也要陪喝,如果第一拳小明沒猜到,則小明喝下第一杯酒,繼續(xù)猜第二拳,沒猜到繼續(xù)喝第二杯,但第三拳不管誰贏雙方同飲自己杯中酒,假設小明每拳贏叔叔的概率為,問在敬酒這環(huán)節(jié)小明喝酒三杯的概率是多少( )
(猜拳只是一種娛樂,喝酒千萬不要過量�。�
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知空間四邊形,
分別在
上,
(1) 若,異面直線
與
所成的角的大小為
,求
和
所成的角的大�。�
(2)當四邊形是平面四邊形時,試判斷
與
三條直線的位置關系,并選擇其中一種位置關系說明理由;
(3)已知當,異面直線
所成角為
,當四邊形
是平行四邊形時,試判斷
點在什么位置時,四邊形
的面積最大,試求出最大面積并說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的廣告費支出 (百萬元)與銷售額
(百萬元)之間有如下對應數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 50 | 60 | 70 |
如果與
之間具有線性相關關系.
(1)作出這些數(shù)據(jù)的散點圖;
(2)求這些數(shù)據(jù)的線性回歸方程;
(3)預測當廣告費支出為9百萬元時的銷售額。 ( 參考數(shù)據(jù): )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,以原點
為極點,
軸的正半軸為極軸,建立極坐標系.已知點
的極坐標為
,曲線
的參數(shù)方程為
(
為參數(shù))
(1)求點的直角坐標;化曲線
的參數(shù)方程為普通方程;
(2)設為曲線
上一動點,以
為對角線的矩形
的一邊垂直于極軸,求矩形
周長的最小值,及此時
點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,多面體中,
兩兩垂直,平面
平面
,平面
平面
,
.
(1)證明四邊形是正方形;
(2)判斷點是否四點共面,并說明為什么?
(3)連結,求證:
平面
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn=3n﹣1.
(1)求a1 , a2 , a3的值;
(2)求數(shù)列{an}的通項公式;
(3)求數(shù)列{nan}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com