精英家教網 > 高中數學 > 題目詳情

對于函數f(x)=x3-3x2,給出命題:

f(x)是增函數,無極值;

f(x)是減函數,無極值;

f(x)的遞增區(qū)間為(-∞,0),(2,+∞),遞減區(qū)間為(0,2);

f(0)=0是極大值,f(2)=-4是極小值.

其中正確的命題有

[  ]
A.

1個

B.

2個

C.

3個

D.

4個

練習冊系列答案
相關習題

科目:高中數學 來源:2007年普通高等學校招生全國統(tǒng)一考試、數學(北京卷) 題型:013

對于函數①f(x)=|x+2|,②f(x)=(x-2)2,③f(x)=cos(x-2),判斷如下兩個命題的真假:

命題甲:f(x+2)是偶函數;

命題乙:f(x)在(-∞,2)上是減函數,在(2,+∞)上是增函數;

能使命題甲、乙均為真的所有函數的序號是

[  ]

A.①②

B.①③

C.

D.

查看答案和解析>>

科目:高中數學 來源:高考總復習全解 數學 一輪復習·必修課程。ㄈ私虒嶒灠妫版 人教實驗版 B版 題型:044

對于函數f(x)=ax2(b+1)x+b-2(a≠0),若存在實數x0,使f(x0)=x0成立,則稱x0為f(x)的不動點.

(1)當a=2,b=-2時,求f(x)的不動點;

(2)若對于任何實數b,函數f(x)恒有兩相異的不動點,求實數a的取值范圍;

(3)在(2)的條件下,若y=f(x)的圖象上A、B兩點的橫坐標是函數f(x)的不動點,且直線y=kx+是線段AB的垂直平分線,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:四川省成都樹德中學2012屆高考適應考試(一)數學試題文理科 題型:022

對于函數f(x),定義:若存在非零常數M,T,使函數f(x)對定義域內的任意x,都滿足f(x+T)-f(x)=M,則稱函數y=f(x)是準周期函數,非零常數T稱為函數y=f(x)的一個準周期.如函數f(x)=2x+sinx是以T=2π為一個準周期且M=4π的準周期函數.下列命題:

①2π是函數f(x)=sinx的一個準周期;

②f(x)=x+(-1)x(x∈z)是以T=2為一個準周期且M=2的準周期函數;

③函數f(x)=kx+b+Asin(wx+φ)(k≠0,w>0)是準周期函數;

④如果f(x)是一個一次函數與一個周期函數的和的形式,則f(x)一定是準周期函數;

⑤如果f(x+1)=-f(x)則函數h(x)=x+f(x)是以T=2為一個準周期且M=4的準周期函數;其中的真命題是________

查看答案和解析>>

科目:高中數學 來源:2012高三數學一輪復習單元練習題 函數(2) 題型:044

對于函數f(x)=ax2+(b+1)x+b-2(a≠0),若存在實數x0,使f(x0)=x0成立,則稱x0為f(x)的不動點.

(1)當a=2,b=-2時,求f(x)的不動點;

(2)若對于任何實數b,函數f(x)恒有兩個相異的不動點,求實數a的取值范圍;

(3)在(2)的條件下,若y=f(x)的圖象上A,B兩點的橫坐標是函數f(x)的不動點,且直線y=kx+是線段AB的垂直平分線,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2014屆湖南省華容縣高一第一學期期末考試數學試卷 題型:解答題

(本小題滿分6分)對于函數f(x),若存在x0ÎR,使f(x0)=x0成立,則稱點(x0,x0)為函數的不動點,已知函數f(x)=ax2+bx-b有不動點(1,1)和(-3,-3),求a、b的值。

 

查看答案和解析>>

同步練習冊答案