【題目】△ABC的三角A,B,C的對邊分別為a,b,c滿足(2b﹣c)cosA=acosC.
(1)求A的值;
(2)若a=2,求△ABC面積的最大值;
(3)若a=2,求△ABC周長的取值范圍.
【答案】
(1)解:將(2b﹣c)cosA=acosC代入正弦定理得:
(2sinB﹣sinC)cosA=sinAcosC,
即2sinBcosA=sinCcosA+cosCsinA=sin(A+C)=sinB,
由B∈(0,180°),得到sinB≠0,
所以cosA= ,又A∈(0,180°),
則A的度數(shù)為60°
(2)解:∵a=2,A=60°,
∴由余弦定理a2=b2+c2﹣2bccosA,得
4=b2+c2﹣2bccos60°,即b2+c2﹣bc=4
∴b2+c2=4+bc≥2bc,可得bc≤4
又∵△ABC的面積S= bcsinA= bc≤
∴當且僅當b=c=2時,△ABC的面積的最大值為 ,此時△ABC是等邊三角形
(3)解:由題意,b>0,c>0,b+c>a=2,
∴由余弦定理4=b2+c2﹣2bccos60°=(b+c)2﹣3bc≥ (b+c)2(當且僅當b=c時取等號),
∴b+c≤4,
∵b+c>2,
∴2<b+c≤4,
∴△ABC的周長的取值范圍為(4,6]
【解析】(1)利用正弦定理化簡已知的等式,再利用兩角和的正弦函數(shù)公式及誘導(dǎo)公式化簡,根據(jù)sinB不為0,得到cosA的值,由A的范圍,利用特殊角的三角函數(shù)值即可求出A的度數(shù).(2)由余弦定理a2=b2+c2﹣2bccosA的式子,得到b2+c2﹣bc=4,結(jié)合基本不等式求出bc≤4,再用正弦定理的面積公式算出當且僅當b=c=2時,△ABC的面積的最大值為 .(3)利用余弦定理結(jié)合基本不等式,可求△ABC的周長的取值范圍.
【考點精析】根據(jù)題目的已知條件,利用正弦定理的定義的相關(guān)知識可以得到問題的答案,需要掌握正弦定理:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定理:“實數(shù)m,n為常數(shù),若函數(shù)h(x)滿足h(m+x)+h(m﹣x)=2n,則函數(shù)y=h(x)的圖象關(guān)于點(m,n)成中心對稱”.
(1)已知函數(shù)f(x)= 的圖象關(guān)于點(1,b)成中心對稱,求實數(shù)b的值;
(2)已知函數(shù)g(x)滿足g(2+x)+g(﹣x)=4,當x∈[0,2]時,都有g(shù)(x)≤3成立,且當x∈[0,1]時,g(x)=2k(x﹣1)+1 , 求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:y=ax+1﹣a(a∈R).若存在實數(shù)a使得一條曲線與直線l有兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于|a|,則稱此曲線為直線l的“絕對曲線”.下面給出四條曲線方程:①y=﹣2|x﹣1|;②y=x2;③(x﹣1)2+(y﹣1)2=1;④x2+3y2=4;則其中直線l的“絕對曲線”有( )
A.①④
B.②③
C.②④
D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店計劃每天購進某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時每件調(diào)劑商品可獲利30元.
(Ⅰ)若商店一天購進該商品10件,求當天的利潤y(單位:元)關(guān)于當天需求量n(單位:件,n∈N)的函數(shù)解析式;
(Ⅱ)商店記錄了50天該商品的日需求量(單位:件),整理得下表:
日需求量n | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 10 | 15 | 10 | 5 |
①假設(shè)該店在這50天內(nèi)每天購進10件該商品,求這50天的日利潤(單位:元)的平均數(shù);
②若該店一天購進10件該商品,記“當天的利潤在區(qū)間”為事件A,求P(A)的估計值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某單位員工的月工資水平,從該單位500位員工中隨機抽取了50位進行調(diào)查,得到如下頻數(shù)分布表和頻率分布直方圖:
月工資 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
男員工數(shù) | 1 | 8 | 10 | 6 | 4 | 4 |
女員工數(shù) | 4 | 2 | 5 | 4 | 1 | 1 |
(1)試由圖估計該單位員工月平均工資;
(2)現(xiàn)用分層抽樣的方法從月工資在[45,55)和[55,65)的兩組所調(diào)查的男員工中隨機選取5人,問各應(yīng)抽取多少人?
(3)若從月工資在[25,35)和[45,55)兩組所調(diào)查的女員工中隨機選取2人,試求這2人月工資差不超過1000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=1,an+1=2an+1 (I)求證數(shù)列{an+1}是等比數(shù)列;
(II)設(shè)cn=n(an+1),求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生態(tài)公園的平面圖呈長方形(如圖),已知生態(tài)公園的長AB=8(km),寬AD=4(km),M,N分別為長方形ABCD邊AD,DC的中點,P,Q為長方形ABCD邊AB,BC(不含端點)上的一點.現(xiàn)公園管理處擬修建觀光車道P﹣Q﹣N﹣M﹣P,要求觀光車道圍成四邊形(如圖陰影部分)的面積為15(km2),設(shè)BP=x(km),BQ=y(km),
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)若B為公園入口,P,Q為觀光車站,觀光車站P位于線段AB靠近入口B的一側(cè).經(jīng)測算,每天由B入口至觀光車站P,Q乘坐觀光車的游客數(shù)量相等,均為1萬人,問如何確定觀光車站P,Q的位置,使所有游客步行距離之和最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的單調(diào)區(qū)間和極值;
(2)是否存在實數(shù),使得函數(shù)在上的最小值為1?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓內(nèi)接△ABC,A,B,C所對的邊分別為a,b,c,滿足acosC+ccosA=2bcosB.
(1)求B的大;
(2)若點D是劣弧 上一點,AB=3,BC=2,AD=1,求四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com