【題目】設(shè)點(diǎn)P的坐標(biāo)為(x﹣3,y﹣2).
(1)在一個(gè)盒子中,放有標(biāo)號(hào)為1,2,3的三張卡片,現(xiàn)在從盒子中隨機(jī)取出一張卡片,記下標(biāo)號(hào)后把卡片放回盒中,再從盒子中隨機(jī)取出一張卡片記下標(biāo)號(hào),記先后兩次抽取卡片的標(biāo)號(hào)分別為x、y,求點(diǎn)P在第二象限的概率;
(2)若利用計(jì)算機(jī)隨機(jī)在區(qū)間[0,3]上先后取兩個(gè)數(shù)分別記為x、y,求點(diǎn)P在第三象限的概率.

【答案】
(1)解:由已知得,基本事件(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣1,﹣1),(﹣1,0),(﹣1,1),(0,﹣1),(0,0)(0,1)共9種

設(shè)“點(diǎn)P在第二象限”為事件A,事件A有(﹣2,1),(﹣1,1)共2種

則P(A)=


(2)解:設(shè)“點(diǎn)P在第三象限”為事件B,則事件B滿足

,作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:

則P(B)= =


【解析】(1)利用列舉法結(jié)合古典概型的概率公式進(jìn)行計(jì)算,(2)作出不等式組對(duì)應(yīng)的平面區(qū)域,利用幾何概型的概率公式進(jìn)行計(jì)算.
【考點(diǎn)精析】掌握幾何概型是解答本題的根本,需要知道幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面向量 , 兩兩所成角相等,且| |=1,| |=2,| |=3,則| + + |為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先將函數(shù)y=f(x)的圖象向左平移 個(gè)單位,然后再將所得圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的2倍,最后再將所得圖象向上平移1個(gè)單位,得到函數(shù)y=sinx的圖象.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于點(diǎn)M( ,2)對(duì)稱,求函數(shù)y=g(x)在[0, ]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, 平面 , 上的動(dòng)點(diǎn), .

(Ⅰ)若點(diǎn)中點(diǎn),證明:平面平面;

(Ⅱ)判斷點(diǎn)到平面的距離是否為定值?若是,求出定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,平面平面, , , 的中點(diǎn).

(1)求證: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鮮花店根據(jù)以往某品種鮮花的銷售記錄,繪制出日銷售量的頻率分布直方圖,如圖所示.將日銷售量落入各組區(qū)間的頻率視為概率,且假設(shè)每天的銷售量相互獨(dú)立.

(1)求在未來的連續(xù)4天中,有2天的日銷售量低于100枝且另外2天不低于150枝的概率;

(2)用表示在未來4天里日銷售量不低于100枝的天數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 和拋物線 , 為坐標(biāo)原點(diǎn).

(1)已知直線和圓相切,與拋物線交于兩點(diǎn),且滿足,求直線的方程;

(2)過拋物線上一點(diǎn)作兩直線和圓相切,且分別交拋物線兩點(diǎn),若直線的斜率為,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)團(tuán)委組織了“弘揚(yáng)奧運(yùn)精神,愛我中華”的知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后畫出如下部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:
(1)求第四小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
(3)從成績是[40,50)和[90,100]的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面四邊形ABCD中,AD=1,CD=2,AC=
(Ⅰ)求cos∠CAD的值;
(Ⅱ)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案