精英家教網 > 高中數學 > 題目詳情
17.設二項式(x-$\frac{a}{x}$)6的展開式中x2項的系數為A,常數項為B,若B=4A,則非零實數a的值為-3.

分析 利用二項展開式的通項公式,求得A和B,再根據B=4A,求得a的值.

解答 解:∵二項式(x-$\frac{a}{x}$)6的展開式的通項公式為Tr+1=${C}_{6}^{r}$•(-a)r•x6-2r,
令6-2r=2,可得 r=2,故展開式中x2項的系數為A=${C}_{6}^{2}$•a2,
令6-2r=0,求得r=3,可得常數項為B=${C}_{6}^{3}$•(-a)3,
若B=4A,則${C}_{6}^{3}$•(-a)3=4${C}_{6}^{4}$•a2,a=-3,
故答案為:-3.

點評 本題主要考查二項式定理的應用,二項展開式的通項公式,求展開式中某項的系數,二項式系數的性質,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

7.如圖,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F,且EF=$\frac{1}{2}$.則下列結論中正確的個數為( 。
①AC⊥BE;
②EF∥平面ABCD;
③三棱錐A-BEF的體積為定值;
④△AEF的面積與△BEF的面積相等.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.在四棱錐P-ABCD中,PA⊥底面ABCD,AB∥CD,AB⊥BC,PA=AB=BC=$\frac{1}{2}$CD.
(Ⅰ)求證:面PAD⊥面PAC;
(Ⅱ)若AB=1,求三棱錐D-PBC的高.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.函數f(x)=sinxcosx-$\frac{\sqrt{3}}{2}$cos2x,則f($\frac{π}{24}$)=( 。
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.如圖所示的幾何體是由等邊三角形ABC的底面的棱柱被平面DEF所截得,已知FA⊥平面ABC,AB=2,BD=1,AF=2,CE=3,O為AB的中點.
(1)求證:OC⊥DF;
(2)求平面DEF與平面ABC相交所成銳角二面角的大。
(3)求多面體ABC-FDE的體積V.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.一只螞蟻在一直角邊長為1m的等腰直角三角形ABC(∠B=90°)內隨機爬行,則螞蟻距A點不超過1m的概率為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.不等式$\frac{1}{x-1}$<-1的解集為(0,1).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知在長方體ABCD-A1B1C1D1中,E、M、N分別是BC、AE、D1C的中點,AD=AA1,AB=2AD
(Ⅰ)證明:MN∥平面ADD1A1
(Ⅱ)求直線AD與平面DMN所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.平面直角坐標系內的向量都可以用一有序實數對唯一表示,這使得我們可以用向量作為解析幾何的研究工具,例如,設直線l的傾斜角α(α≠90°),在l上任取兩個不同的點P1(x1,y2),P2(x2,y2),不妨設向量$\overrightarrow{{P_1}{P_2}}$的方向是向上的,那么向量$\overrightarrow{{P_1}{P_2}}$的坐標為(x2-x1,y2-y1),過原點作向量$\overrightarrow{OP}$=$\overrightarrow{{P_1}{P_2}}$,則點P的坐標是(x2-x1,y2-y1),而直線OP的傾斜角也是α(α≠90°),根據正切函數的定義得k=tanα=$\frac{{{y_2}-{y_1}}}{{x{\;}_2-{x_1}}}$;利用向量工具研究下列直線Ax+By+C=0,(ABC≠0)有關問題;
(1)、判斷向量$\overrightarrow m$=(A,B)與直線Ax+By+C=0的關系,并說明理由;
(2)、直線A1x+B1y+C1=0與直線A2x+B2y+C2=0相交,求兩直線夾角的余弦值;
(3)、用向量知識推導點P0(x0,y0)到直線Ax+By+C=0,(ABC≠0)的距離公式.

查看答案和解析>>

同步練習冊答案