分析 (I)先求出基本事件的總數(shù),再求出“地點(diǎn)A空降1人,地點(diǎn)B、C各空降2人”包含的基本事件個(gè)數(shù),由此能求出所求事件的概率.
( II)由題意知隨機(jī)變量ξ~B(5,$\frac{1}{3}$),由此能求出隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
解答 解:(I)基本事件的總數(shù)為35個(gè),
“地點(diǎn)A空降1人,地點(diǎn)B、C各空降2人”包含的基本事件為$C_5^1C_4^2$,…(3分)
所以所求事件的概率為:$P=\frac{C_5^1C_4^2}{3^5}=\frac{10}{81}$;…(5分)
( II)由題意知隨機(jī)變量ξ~B(5,$\frac{1}{3}$),…(7分)
∴隨機(jī)變量ξ的所有可能取值為0,1,2,3,4,5,
P(ξ=0)=${C}_{5}^{0}(\frac{2}{3})^{5}$=$\frac{32}{243}$,
P(ξ=1)=${C}_{5}^{1}•\frac{1}{3}•(\frac{2}{3})^{4}$=$\frac{80}{243}$,
P(ξ=2)=${C}_{5}^{2}(\frac{1}{3})^{2}(\frac{2}{3})^{3}$=$\frac{80}{243}$,
P(ξ=3)=${C}_{5}^{3}(\frac{1}{3})^{3}(\frac{2}{3})^{2}$=$\frac{40}{243}$,
P(ξ=4)=${C}_{5}^{4}(\frac{1}{3})^{4}•\frac{2}{3}$=$\frac{10}{243}$,
P(ξ=5)=${C}_{5}^{5}(\frac{1}{3})^{5}$=$\frac{1}{243}$,…(10分)
所以隨機(jī)變量ξ的分布列為:
ξ | 0 | 1 | 2 | 3 | 4 | 5 |
P | $\frac{32}{243}$ | $\frac{80}{243}$ | $\frac{80}{243}$ | $\frac{40}{243}$ | $\frac{10}{243}$ | $\frac{1}{243}$ |
點(diǎn)評(píng) 本題考查概率的求法,考查離散型承受機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意二項(xiàng)分布的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|-1≤x≤0} | B. | {x|0<x<2} | C. | {x|-1<x<0} | D. | {x|-1<x≤0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{ab+bc+ac}{{a}^{2}+^{2}+{c}^{2}}$ | B. | -$\frac{ab+bc+ac}{{a}^{2}+^{2}+{c}^{2}}$ | ||
C. | $\frac{2ab}{{a}^{2}+^{2}}$ | D. | -$\frac{2ab}{{a}^{2}+^{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com