已知l,m,n是三條不同的直線,α,β是不同的平面,則下列條件中能推出α⊥β的是(     )
A.lα,mβ,且l⊥m
B.lα,mβ,nβ,且l⊥m,l⊥n
C.mα,nβ,m//n,且l⊥m
D.lα,l//m,且m⊥β
D

試題分析:對A.lα,mβ,且l⊥m,如下圖,α、β不垂直;對B.lα,mβ,nβ,且l⊥m,
l⊥n,如下圖,α、β不垂直;
;
對C.mα,nβ,m//n,且l⊥m,直線l沒有確定,則α、β的關系也不能確定;對D.lα,l//m,且m⊥β,則必有l(wèi)⊥β,根據(jù)面面垂直的判定定理知,α⊥β.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在正方體中,

(1)求證:;
(2)求直線與直線BD所成的角

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

棱長為2的正方體中,E為的中點.

(1)求證:;
(2)求異面直線AE與所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

四棱錐P-ABCD中,側面PAD⊥底面ABCD,底面ABCD是邊長為2的正方形,又PA=PD,∠APD=60°,E、G分別是BC、PE的中點.

(1)求證:AD⊥PE;
(2)求二面角E-AD-G的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱柱中,四邊形為菱形,,四邊形為矩形,若,,.

(1)求證:
(2)求二面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知AB為圓O的直徑,點D為線段AB上一點,且,點C為圓O上一點,且.點P在圓O所在平面上的正投影為點D,PD=DB.

(1)求證:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在長方形中,的中點,為線段(端點除外)上一動點,現(xiàn)將沿折起,使平面平面.在平面內(nèi)過點為垂足,設,則的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是兩條不重合的直線,是兩個不重合的平面,給出下列命題:
①若,,且,則;
②若,,且,則;
③若,,且,則;
④若,,且,則.
其中正確命題的個數(shù)是(   )
A.0B.1 C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果直線//直線,且//平面,那么的位置關系是(  )
A.相交B.//C.D.//

查看答案和解析>>

同步練習冊答案