(p) 如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論錯(cuò)誤的是


  1. A.
    BD//平面CB1D1
  2. B.
    AC1⊥BD
  3. C.
    AC1⊥平面CB1D1
  4. D.
    異面直線AD與CB1所成的角為60°
D
:對A,∵BD∥B1D1,∴BD∥面CB1D1,∴A正確.
對B,BD⊥AC且BD⊥CC1,∴BD⊥面ACC1A1,∴BD⊥AC1,∴B正確.
對C,∵AC1⊥B1D1,又AC1⊥B1C,∴AC1⊥面CB1D1.∴C正確;
對D,∵AD∥BC,∴∠BCB1為異面直線AD與CB1所成的角,其大小為45°,
∴D錯(cuò)誤.故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

21、如圖,△ABC內(nèi)接于圓⊙,點(diǎn)D是圓⊙上異于A、B、C三點(diǎn)的任意一點(diǎn),過D點(diǎn)作DP⊥AB,DQ⊥BC,DR⊥AC,交AB、BC、AC分別為P,Q,R.
(1)求證:∠BDP=∠CDR;
(2)求證:P,Q,R三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點(diǎn)E,交⊙O于點(diǎn)D.若PA=PE,∠ABC=60°,PD=1,PB=9,則EC=
4
4

B. P為曲線C1
x=1+cosθ
y=sinθ
,(θ為參數(shù))上一點(diǎn),則它到直線C2
x=1+2t
y=2
(t為參數(shù))距離的最小值為
1
1

C.不等式|x2-3x-4|>x+1的解集為
{x|x>5或x<-1或-1<x<3}
{x|x>5或x<-1或-1<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴州模擬)如圖,△ABC中,O是BC的中點(diǎn),AB=AC,AO=2OC=2.將三角形BAO沿AO折起,使B點(diǎn)與圖中B1點(diǎn)重合,其中B1O⊥平面AOC.
(Ⅰ)求二面角A-B1C-O的大。
(Ⅱ)設(shè)P為線段B1A的中點(diǎn),求CP與平面B1OA所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇三模)如圖,△ABC是邊長為2
3
的等邊三角形,P是以C為圓心,1為半徑的圓上的任意一點(diǎn),則
AP
BP
的取值范圍是
[1,13]
[1,13]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選作題:考生任選一題作答,如果多做,則按所做的第一題計(jì)分.
A 如圖,△ABC的角平分線AD的延長線交它的外接圓于點(diǎn)E.
(I)證明:△ABE∽△ADC
(II)若△ABC的面積S=
1
2
AD•AE
,求∠BAC的大。
B 已知曲線C1
x=-4+cost
y=3+sint
(t為參數(shù)),C2
x=8cosθ
y=3sinθ
(θ為參數(shù)).
(1)化C1,C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點(diǎn)P對應(yīng)的參數(shù)為t=
π
2
,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3
x=3+2t
y=-2+t
(t為參數(shù))距離的最小值.                
C 已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案