求證:

(1)xn-nan-1+(n-1)an能被(x-a)2整除

(2)mn+2+(m+1)2n+1能被m2+m+1整除(n∈N*)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α,β∈R且αβ≠0,數(shù)列{xn}滿足x1=α+β,x2=α2+αβ+β2,xn+2=(α+β)xn+1-αβ•xn(n≥1,n∈N),令bn=xn+1-αxn
(1)求證:{bn}是等比數(shù)列;
(2)求數(shù)列{xn}的通項(xiàng)公式;(不能直接使用競(jìng)賽書上的結(jié)論,要有推導(dǎo)過(guò)程)
(3)若α=β=
12
,求{xn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在R上的函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d∈R),當(dāng)x=-1時(shí)f(x)取得極大值
2
3
,且函數(shù)y=f(x)為奇函數(shù).
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)設(shè)xn=
2n-1
2n
,ym=
2
(1-3m)
3m
(m,n∈N*)
,求證:|f(xn)-f(ym)|<
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知 x1x2,x3xn的平均數(shù)為
.
x
,其方差為
s
2
x
yi=axi+b
,(i=1,2,3,…n),y1y2,y3,…yn的平均數(shù)為
.
y
,其方差為
s
2
y

求證:(1) 
.
y
=a
.
x
+b(2) 
s
2
y
=a2×
s
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知曲線C:y=
1
x
,Cny=
1
x+2-n
(n∈N*).從C上的點(diǎn)Qn(xn,yn)作x軸的垂線,交Cn于點(diǎn)Pn,再過(guò)點(diǎn)Pn作y軸的垂線,交C于點(diǎn)Qn+1(xn+1,yn+1)設(shè),x1=1,an=xn+1-xn,bn=yn -yn+1
(1)求點(diǎn)Q1、Q2的坐標(biāo);
(2)求數(shù)列{an} 的通項(xiàng)公式;
(3)記數(shù)列{an•yn+1} 的前n項(xiàng)和為Sn,求證sn
1
3

查看答案和解析>>

同步練習(xí)冊(cè)答案