【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)證明:(i);
(ii)對(duì)任意,對(duì)恒成立.
【答案】(1)的單調(diào)遞增區(qū)間為,,的單調(diào)遞減區(qū)間為. (2)(i)證明見(jiàn)解析(ii)證明見(jiàn)解析
【解析】
(1)將代入函數(shù)解析式,并求得導(dǎo)函數(shù),由導(dǎo)函數(shù)的符號(hào)即可判斷的單調(diào)區(qū)間;
(2)(i)構(gòu)造函數(shù)并求得,利用的單調(diào)性求得最大值,即可證明不等式成立.;(ii)由(i)可知將不等式變形可得成立,構(gòu)造函數(shù),因式分解后解一元二次不等式即可證明對(duì)恒成立.
(1)若,(),
令,得或, 則的單調(diào)遞增區(qū)間為,.
令,得,則的單調(diào)遞減區(qū)間為.
(2)證明:(i)設(shè),
則(),
令,得;
令,得.
故,
從而,即.
(ii)函數(shù)
由(i)可知
即,所以,當(dāng)時(shí)取等號(hào);
所以當(dāng)時(shí),則
若,令
則,
當(dāng)時(shí),.
則當(dāng)時(shí),,
故對(duì)任意,對(duì)恒成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè).
(1)若,且為函數(shù)的一個(gè)極值點(diǎn),求函數(shù)的單調(diào)遞增區(qū)間;
(2)若,且函數(shù)的圖象恒在軸下方,其中是自然對(duì)數(shù)的底數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;
若函數(shù)在上是增函數(shù),求實(shí)數(shù)a的取值范圍;
若,且對(duì)任意,,,都有,求實(shí)數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:,點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線交線段于點(diǎn).
(1)求點(diǎn)的軌跡方程.
(2)設(shè)點(diǎn),是的軌跡上異于頂點(diǎn)的任意兩點(diǎn),以為直徑的圓過(guò)點(diǎn).求證直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,為拋物線過(guò)焦點(diǎn)的弦,已知以為直徑的圓與相切于點(diǎn).
(1)求的值及圓的方程;
(2)設(shè)為上任意一點(diǎn),過(guò)點(diǎn)作的切線,切點(diǎn)為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】環(huán)保部門要對(duì)所有的新車模型進(jìn)行廣泛測(cè)試,以確定它的行車?yán)锍痰牡燃?jí),右表是對(duì) 100 輛新車模型在一個(gè)耗油單位內(nèi)行車?yán)锍蹋▎挝唬汗铮┑臏y(cè)試結(jié)果.
(Ⅰ)做出上述測(cè)試結(jié)果的頻率分布直方圖,并指出其中位數(shù)落在哪一組;
(Ⅱ)用分層抽樣的方法從行車?yán)锍淘趨^(qū)間[38,40)與[40,42)的新車模型中任取5輛,并從這5輛中隨機(jī)抽取2輛,求其中恰有一個(gè)新車模型行車?yán)锍淘赱40,42)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x-m|-|2x+2m|(m>0).
(Ⅰ)當(dāng)m=1時(shí),求不等式f(x)≥1的解集;
(Ⅱ)若x∈R,t∈R,使得f(x)+|t-1|<|t+1|,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(,).
(1)當(dāng)時(shí),在上是單調(diào)遞增函數(shù),求的取值范圍;
(2)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;
(3)對(duì)于任意給定的正實(shí)數(shù),證明:存在實(shí)數(shù),使得
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com