20.如果函數(shù)f(x)=-x2+2x+c的最大值為3,則實數(shù)c=2.

分析 首先要確定一元二次函數(shù)的開口與對稱軸,f(x)在對稱軸處取得最大值,所以f(1)=3.

解答 解:由題意知一元二次函數(shù)f(x)開口朝下,定義域為R;
f(x)的對稱軸為:x=$-\frac{2a}$=1;
所以f(x)在對稱軸處取得最大值f(1)=1+c;
由題意:1+c=3,∴c=2.
故答案為:2.

點評 本題主要考查了一元二次函數(shù)的基本圖形特征與性質,屬簡單題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.在平面直角坐標系中,角α的頂點與原點重合,始邊與x軸的非負半軸重合,終邊過點P(-$\sqrt{3}$,-1),則cos2α=( 。
A.$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.不等式($\frac{a}{{e}^{a}}$-b)2≥m-(a-b+3)2對任意實數(shù)a,b恒成立,則實數(shù)m的最大值是( 。
A.$\frac{9}{2}$B.$\frac{3\sqrt{2}}{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知橢圓的長軸和短軸都在坐標軸上,中心在原點,且經過定點(3,0),長軸長是短軸長的3倍,則橢圓的方程為( 。
A.$\frac{{x}^{2}}{9}+{y}^{2}$=1B.$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{81}$=1
C.$\frac{{x}^{2}}{9}+{y}^{2}$=1或 $\frac{{x}^{2}}{9}+\frac{{y}^{2}}{81}$=1D.$\frac{{x}^{2}}{81}+\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.將石子擺成如圖所示的梯形形狀.稱數(shù)列5,9,14,20,…為“梯形數(shù)”.根據圖形的構成,此數(shù)列的第2 014項與5的差,即a2014-5=( 。
A.2 018×2 012B.2 020×2 013C.1 009×2 012D.1 010×2 013

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若R上的奇函數(shù)y=f(x)的圖象關于直線x=1對稱,且當0<x≤1時,f(x)=log2x,則方程f(x)=f(0)+$\frac{1}{4}$在區(qū)間(2014,2016)內的所有實數(shù)根之和為( 。
A.4028B.4030C.4032D.4034

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在某市進行城市環(huán)境建設中,要把一個三角形的區(qū)域改造成室內公園,經過測量得到這個三角形區(qū)域的三條邊長分別為10m,8m,14m,這個區(qū)域的面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知f(x)=lg$\frac{1+x}{1-x}$(-<x,1).
(I) 判斷f(x)的奇偶性,并予以證明;
(Ⅱ)設f($\frac{1}{2}$)+f($\frac{1}{3}$)=f(x0),求x0的值.
(Ⅲ)求證:對于f(x)的定義域內的任意兩個實數(shù)a,b,都有f(a)+f(b)=f($\frac{a+b}{1+ab}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知點A、B、C、D在同一球面上,AB=BC=$\sqrt{2}$,AC=2,DB⊥平面ABC,四面體ABCD的體積為$\frac{2}{3}$,則這個球的體積為( 。
A.B.$\frac{8\sqrt{2}π}{3}$C.16πD.$\frac{32π}{3}$

查看答案和解析>>

同步練習冊答案