已知α,β都是銳角,sinα=
3
5
,cosβ=
5
13
,求 sin(α+β)的值.
分析:根據(jù)α,β都是銳角,sinα與cosβ的值,利用同角三角函數(shù)間的基本關(guān)系求出cosα與sinβ的值,所求式子利用兩角和與差的正弦函數(shù)公式化簡后,將各自的值代入計算即可求出值.
解答:解:∵α,β都是銳角,sinα=
3
5
,cosβ=
5
13

∴cosα=
1-sin2α
=
4
5
,sinβ=
1-cos2β
=
12
13
,
則sin(α+β)=sinαcosβ+cosαsinβ=
3
5
×
5
13
+
4
5
×
12
13
=
63
65
點評:此題考查了兩角和與差的正弦函數(shù)公式,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文科做)已知A、B都是銳角,且A+B
π2
,(1+tanA)(1+tanB)=2,求證A+B=45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

已知a、b都是銳角,且3sin2a+2sin2b=1,3sin2a-3sin2b=0。求證:。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

已知a、b都是銳角,且3sin2a+2sin2b=13sin2a-3sin2b=0。求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(文科做)已知A、B都是銳角,且A+B
π
2
,(1+tanA)(1+tanB)=2,求證A+B=45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2005-2006學(xué)年廣東省廣州113中學(xué)高二(下)3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

(文科做)已知A、B都是銳角,且A+B,(1+tanA)(1+tanB)=2,求證A+B=45°.

查看答案和解析>>

同步練習(xí)冊答案