對任意x∈R,函數(shù)f(x)滿足f(x+1)=
f(x)-[f(x)]2
+
1
2
,設(shè)an=[f(n)]2-f(n),數(shù)列{an}的前15項(xiàng)的和為-
31
16
,則f(15)=______.
f(x+1)=
f(x)-[f(x)]2
+
1
2
,
f(x+1)-
1
2
=
f(x)-[f(x)]2
,
兩邊平方得[f(x+1)-
1
2
]
2
=f(x)-[f(x)]2

?[f(x+1)]2-f(x+1)+
1
4
=f(x)-[f(x)]2

an+1+an=-
1
4
,即數(shù)列{an}任意相鄰兩項(xiàng)相加為常數(shù)-
1
4
,
S15=7×(-
1
4
)+a15=-
31
16
?a15=-
3
16
,
[f(15)]2-f(15)=-
3
16
?f(15)=
3
4
或f(15)=
1
4
,
又由f(x+1)=
f(x)-[f(x)]2
+
1
2
1
2
,
可得f(15)=
3
4

故答案為:
3
4
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•宜春模擬)對任意x∈R,函數(shù)f(x)的導(dǎo)數(shù)存在,若f′(x)>f(x)且 a>0,則以下正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•東城區(qū)二模)對任意x∈R,函數(shù)f(x)滿足f(x+1)=
f(x)-[f(x)]2
+
1
2
,設(shè)an=[f(n)]2-f(n),數(shù)列{an}的前15項(xiàng)的和為-
31
16
,則f(15)=
3
4
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意X∈R,函數(shù)f(x)的導(dǎo)數(shù)存在,若f′(x)>f(x),且a>0,則下列結(jié)論正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•無為縣模擬)對任意x∈R,函數(shù)f(x)=ax3+ax2+7x不存在極值點(diǎn)的充要條件是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意x∈R,函數(shù)f(x)同時具有下列性質(zhì):①f(x+π)=f(x);②函數(shù)f(x)的一條對稱軸是x=
π
3
,則函數(shù)f(x)可以是(  )
A、f(x)=sin(
x
2
+
π
6
B、f(x)=sin(2x-
π
6
C、f(x)=cos(2x-
π
6
D、f(x)=cos(2x-
π
3

查看答案和解析>>

同步練習(xí)冊答案