【題目】如圖,直三棱柱中,,,的中點.

(I)若上的一點,且與直線垂直,求的值;

(Ⅱ)在(I)的條件下,設(shè)異面直線所成的角為45°,求點到平面的距離.

【答案】(Ⅰ) (Ⅱ)

【解析】

(Ⅰ) 取中點,可知,利用面面垂直可證得平面,進而得到,根據(jù)線面垂直性質(zhì)得,從而可證得;從而利用平行線分線段成比例求得結(jié)果;(Ⅱ)利用,根據(jù)異面直線成角和分別求解出所需線段長和,從而構(gòu)造方程求解出點到面的距離.

(Ⅰ)證明:取中點,連接

中點,則有

又因為三棱柱為直三棱柱 平面平面

平面平面 平面

平面

,平面,平面

平面,又平面

連接,設(shè),因為為正方形

平面平面

的中點 的中點

(Ⅱ)由(Ⅰ)可知

可求得

由余弦定理可得:

連接,連接

在三棱錐及三棱錐中,

到平面的距離為

所以,即點到平面的距離為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,某地區(qū)積極踐行“綠水青山就是金山銀山”的綠色發(fā)展理念年年初至年年初,該地區(qū)綠化面積(單位:平方公里)的數(shù)據(jù)如下表:

年份

年份代號

綠化面積

(1)求關(guān)于的線性回歸方程;

(2)利用(1)中的回歸方程,預(yù)測該地區(qū)年年初的綠化面積,并計算年年初至年年初,該地區(qū)綠化面積的年平均增長率約為多少.

(附:回歸直線的斜率與截距的最小二乘法估計公式分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,的角平分線所在直線為,邊的高線所在直線為,邊的高線所在直線為

1)求直線的方程;

2)求直線的方程;

3)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,平面,底面為菱形,,E中點,M的中點,F上的動點.

1)求證:平面平面

2)直線與平面所成角的正切值為,當(dāng)F中點時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)若,,求實數(shù)的值.

2)若,,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線過原點且傾斜角為.以坐標(biāo)原點為極點,軸正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.在平面直角坐標(biāo)系中,曲線與曲線關(guān)于直線對稱.

(Ⅰ)求曲線的極坐標(biāo)方程;

(Ⅱ)若直線過原點且傾斜角為,設(shè)直線與曲線相交于,兩點,直線與曲線相交于,兩點,當(dāng)變化時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間有5名工人其中初級工2人,中級工2人,高級工1現(xiàn)從這5名工人中隨機抽取2名.

求被抽取的2名工人都是初級工的概率;

求被抽取的2名工人中沒有中級工的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,動點,線段與圓相交于點,線段的長度與點軸的距離相等.

(1)求動點的軌跡的方程;

(2)過點的直線交曲線,兩點,交圓,兩點,其中在線段上,在線段上,求的最小值及此時直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟收入增加了一倍.實現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟收入構(gòu)成比例.得到如下餅圖:

則下面結(jié)論中不正確的是

A. 新農(nóng)村建設(shè)后,種植收入減少

B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上

C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍

D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟收入的一半

查看答案和解析>>

同步練習(xí)冊答案