已知
AB
=2
e 1
+k
e 2
CB
=
e 1
+3
e 2
CD
=2
e 1
-
e 2
,若A、B、D三點(diǎn)共線,則k=
 
分析:由A,B,D三點(diǎn)共線,可構(gòu)造兩個(gè)向量共線,再利用兩個(gè)向量共線的定理求解即可.
解答:解:∵A,B,D三點(diǎn)共線,∴
AB
BD
共線,
∴存在實(shí)數(shù)λ,使得
AB
=λ
BD
;
BD
=
CD
-
CB
=2
e 1
-
e 2
-(
e 1
+3
e 2
)=
e 1
-4
e 2
,
∴2
e 1
+k
e 2
=λ(
e 1
-4
e 2
),
e 1
、
e 2
是平面內(nèi)不共線的兩向量,
2=λ
k=-4λ
解得k=-8.
故答案為:-8.
點(diǎn)評(píng):本題考查三點(diǎn)共線和向量共線的轉(zhuǎn)化和向量共線的條件,屬基本題型的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+lnx,(x>0)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)令g(x)=x3+(a-2e)x2+(a+e2)x(其中e為自然對(duì)數(shù)的底數(shù)),討論函數(shù)H(x)=f(x)-g(x)的零點(diǎn)的個(gè)數(shù);
(3)若函數(shù)y=f(x)的圖象上任意兩點(diǎn)A(x1,y1),B(x2,y2),(x1<x2),都滿足x1
1k
x2
(其中k是直線AB的斜率),則稱函數(shù)y=f(x)為優(yōu)美函數(shù),當(dāng)a=0時(shí),函數(shù)f(x)是否是優(yōu)美函數(shù),如果是,請(qǐng)證明,如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+ln(x+1),(a∈R).
(Ⅰ)設(shè)函數(shù)Y=F(X-1)定義域?yàn)镈
①求定義域D;
②若函數(shù)h(x)=x4+[f(x)-ln(x+1)](x+
1
x
)+cx2+f′(0)在D上有零點(diǎn),求a2+c2的最小值;
(Ⅱ) 當(dāng)a=
1
2
時(shí),g(x)=f′(x-1)+bf(x-1)-ab(x-1)2+2a,若對(duì)任意的x∈[1,e],都有
2
e
≤g(x)≤2e恒成立,求實(shí)數(shù)b的取值范圍;(注:e為自然對(duì)數(shù)的底數(shù))
(Ⅲ)當(dāng)x∈[0,+∞)時(shí),函數(shù)y=f(x)圖象上的點(diǎn)都在
x≥0
y-x≤0
所表示的平面區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省寧波市象山中學(xué)、象山港書院高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=ax2+lnx,(x>0)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)令g(x)=x3+(a-2e)x2+(a+e2)x(其中e為自然對(duì)數(shù)的底數(shù)),討論函數(shù)H(x)=f(x)-g(x)的零點(diǎn)的個(gè)數(shù);
(3)若函數(shù)y=f(x)的圖象上任意兩點(diǎn)A(x1,y1),B(x2,y2),(x1<x2),都滿足(其中k是直線AB的斜率),則稱函數(shù)y=f(x)為優(yōu)美函數(shù),當(dāng)a=0時(shí),函數(shù)f(x)是否是優(yōu)美函數(shù),如果是,請(qǐng)證明,如果不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案