如圖所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=,∠ABC=60°.
(1)證明:AB⊥A1C;
(2)求二面角A-A1C-B的余弦值.
【答案】分析:(1)欲證AB⊥A1C,而A1C?平面ACC1A1,可先證AB⊥平面ACC1A1,根據(jù)三棱柱ABC-A1B1C1為直三棱柱,可知AB⊥AA1,由正弦定理得AB⊥AC,滿足線面垂直的判定定理所需條件;
(2)作AD⊥A1C交A1C于D點,連接BD,由三垂線定理知BD⊥A1C,則∠ADB為二面角A-A1C-B的平面角,在Rt△BAD中,求出二面角A-A1C-B的余弦值即可.
解答:解:(1)證明:∵三棱柱ABC-A1B1C1為直三棱柱,∴AB⊥AA1,在△ABC中,AB=1,AC=,∠ABC=60°,由正弦定理得∠ACB=30°,
∴∠BAC=90°,即AB⊥AC,
∴AB⊥平面ACC1A1,
又A1C?平面ACC1A1,
∴AB⊥A1C.
(2)如圖,作AD⊥A1C交A1C于D點,連接BD,
由三垂線定理知BD⊥A1C,
∴∠ADB為二面角A-A1C-B的平面角.
在Rt△AA1C中,AD===,
在Rt△BAD中,tan∠ADB==,
∴cos∠ADB=,
即二面角A-A1C-B的余弦值為
點評:本題考查直線與平面垂直的性質(zhì),二面角及其度量,考查空間想象能力,邏輯思維能力,計算能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AA1=AC=BC=2,D、E、F分別是AB、AA1、CC1的中點,P是CD上的點.
(1)求直線PE與平面ABC所成角的正切值的最大值;
(2)求證:直線PE∥平面A1BF;
(3)求直線PE與平面A1BF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直線B′C與平面ABC成30°角.
(1)求證:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,底面是∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中點,點F在線段AA1上,當(dāng)AF=
a或2a
a或2a
時,CF⊥平面B1DF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D為AC的中點.
(Ⅰ)求證:B1C1⊥平面ABB1A1
(Ⅱ)設(shè)E是CC1的中點,試求出A1E與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1=BC,AC1⊥平面A1BD,D為AC的中點.
(1)求證:B1C∥平面A1BD;
(2)求證:B1C1⊥平面ABB1A1;
(3)在CC1上是否存在一點E,使得∠BA1E=45°,若存在,試確定E的位置,并判斷平面A1BD與平面BDE是否垂直?若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案