18.已知α∈($\frac{π}{6}$,π),$\overrightarrow{a}$=(sin(2α+β),sinβ),$\overrightarrow$=(3,1),且$\overrightarrow{a}$∥$\overrightarrow$,設(shè)tanα=x,tanβ=y,記y=f(x),當(dāng)f(x)=$\frac{1}{3}$時(shí),α=$\frac{π}{4}$.

分析 根據(jù)$\overrightarrow{a}$∥$\overrightarrow$,得出sin(2α+β)-3sinβ=0,用拆項(xiàng)法化簡得出sin(α+β)cosα=2cos(α+β)sinα,
弦化切得出tan(α+β)=2tanα,再利用兩角和的正切公式,結(jié)合tanα=x,tanβ=y,得出x與y的關(guān)系式,利用f(x)=$\frac{1}{3}$求出對(duì)應(yīng)x的值.

解答 解:∵$\overrightarrow{a}$=(sin(2α+β),sinβ),$\overrightarrow$=(3,1),且$\overrightarrow{a}$∥$\overrightarrow$,
∴sin(2α+β)-3sinβ=0,
即sin[(α+β)+α]=3sin[(α+β)-α];
∴sin(α+β)cosα+cos(α+β)sinα=3sin(α+β)cosα-3cos(α+β)sinα,
化簡得sin(α+β)cosα=2cos(α+β)sinα,
即tan(α+β)=2tanα,
∴$\frac{tanα+tanβ}{1-tanαtanβ}$=2tanα;
又tanα=x,tanβ=y,
∴$\frac{x+y}{1-xy}$=2x,
解得y=f(x)=$\frac{x}{1+2x}$;
令f(x)=$\frac{1}{3}$,即$\frac{x}{1+2x}$=$\frac{1}{3}$,
解得x=1或x=$\frac{1}{2}$,
∴tanα=1或tanα=$\frac{1}{2}$;
又∵α∈($\frac{π}{6}$,π),
∴tanα=1,
∴α=$\frac{π}{4}$.
故答案為:$\frac{π}{4}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了三角恒等變換的應(yīng)用問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在如圖所示的△ABC中,內(nèi)角A,B,C所對(duì)的邊的長分別為a,b,c,已知a=c,且滿足$cosC+({cosA-\sqrt{3}sinA})cosB=0$,若點(diǎn)O是△ABC外一點(diǎn),且OA=2OB=4,∠AOB=θ,則四邊形OACB面積的最大值為( 。
A.$4+4\sqrt{3}$B.$5+4\sqrt{3}$C.12D.$8+5\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)y=log${\;}_{\frac{1}{2}}$(x2-ax+a)在(3,+∞)上是減函數(shù),則a的取值范圍是(-∞,$\frac{9}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x-1),x>0}\\{-2,x=0}\\{{3}^{x},x<0}\end{array}\right.$,則f(2)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在四邊形ABCD中,M為BD上靠近D的三等分點(diǎn),且滿足$\overrightarrow{AM}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,則實(shí)數(shù)x,y的值分別為(  )
A.$\frac{1}{3}$,$\frac{2}{3}$B.$\frac{2}{3}$,$\frac{1}{3}$C.$\frac{1}{2}$,$\frac{1}{2}$D.$\frac{1}{4}$,$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f(x)=ax-b的圖象如圖所示,則( 。
A.a>1,b>1B.a>1,0<b<1C.0<a<1,b>1D.0<a<1,0<b<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若直線x+2y-2=0與橢圓mx2+ny2=1交于點(diǎn)C,D,點(diǎn)M為CD的中點(diǎn),直線OM(O為原點(diǎn))的斜率為$\frac{1}{2}$,且OC⊥OD,則m+n=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某個(gè)實(shí)心零部件的形狀是如圖所示的幾何體,其下部為底面是正方形,側(cè)面是全等的等腰梯形的四棱臺(tái)A1B1C1D1-ABCD.上部為直四棱柱ABCD-A2B2C2D2
(1)證明:直線BD⊥平面ACC2A2
(2)現(xiàn)需要對(duì)該零件表面進(jìn)行防腐處理,已知AB=10,A1B1=20,AA2=30,AA1=13(單位:厘米)每平方厘米的加工處理費(fèi)為0.20元,需加工處理費(fèi)多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“點(diǎn)P(tanα,cosα)在第二象限”是“角α的終邊在第四象限”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案