如圖所示,已知兩點(diǎn)P(-2,2)、Q(0,2)以及一直線l:y=x,設(shè)長(zhǎng)為的線段AB在直線l上移動(dòng).求直線PA和QB的交點(diǎn)M的軌跡方程.

答案:
解析:

設(shè)M(x,y),題中的幾何條件是|AB|=,所以只需用(x,y)表示出A、B兩點(diǎn)的坐標(biāo),便可求出曲線的方程,而要表示A點(diǎn)坐標(biāo)可先找出AM兩點(diǎn)坐標(biāo)的關(guān)系,顯然PA、M三點(diǎn)共線.這樣便可找出AM坐標(biāo)之間的關(guān)系,進(jìn)而表示出A的坐標(biāo),同理便可表示出B的坐標(biāo),問(wèn)題便可以迎刃而解.


提示:

本題的前兩種方法屬于直接法,相對(duì)較繁,而后一種方法,事實(shí)上它涉及到參數(shù)的思想(a為參數(shù)),利用交點(diǎn)求軌跡方程.一般先把交點(diǎn)表示為關(guān)于參數(shù)的坐標(biāo),然后消去參數(shù),這也反映出運(yùn)動(dòng)的觀點(diǎn).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿(mǎn)足AM=2AP,NP⊥AM,點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)若過(guò)定點(diǎn)F(0,2)的直線l交曲線E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿(mǎn)足FG=
1
2
FH
,求直線l的方程;
(3)設(shè)曲線E的左右焦點(diǎn)為F1,F(xiàn)2,過(guò)F1的直線交曲線于Q,S兩點(diǎn),過(guò)F2的直線交曲線于R,T兩點(diǎn),且QS⊥RT,垂足為W;
(ⅰ)設(shè)W(x0,y0),證明:
x
2
0
2
+
y
2
0
<1
;
(ⅱ)求四邊形QRST的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•石景山區(qū)一模)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿(mǎn)足
AM
=2
AP
,
NP
AM
=0
,點(diǎn)N的軌跡為曲線E.
(Ⅰ) 求曲線E的方程;
(Ⅱ) 若點(diǎn)B1(x1,y1),B2(-1,y2),B3(x3,y3)在曲線E上,線段B1B3的垂直平分線為直線l,且|B1A|,|B2A|,|B3A|成等差數(shù)列,求x1+x3的值,并證明直線l過(guò)定點(diǎn);
(Ⅲ)若過(guò)定點(diǎn)F(0,2)的直線交曲線E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿(mǎn)足
FG
FH
,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知橢圓C:x2+
y2
a2
=1(a>1)的離心率為e,點(diǎn)F為其下焦點(diǎn),點(diǎn)A為其上頂點(diǎn),過(guò)F的直線l:y=mx-c(其中c=
a2-1
與橢圓C相交于P,Q兩點(diǎn),且滿(mǎn)足
AP
AQ
=
a2(a+c)2-1
2-c2

(1)試用a表示m2
(2)求e的最大值;
(3)若e∈(
1
3
1
2
),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省高一理科實(shí)驗(yàn)班預(yù)錄模擬數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,已知點(diǎn)P是⊙O外一點(diǎn),PS、PT是⊙O的兩條切線,過(guò)點(diǎn)P作⊙O

的割線PAB,交⊙O于A、B兩點(diǎn),與ST交于點(diǎn)C,求證:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案