【題目】如圖,在四棱錐中,底面為直角梯形, , ,平面底面, 為的中點, , 是棱上的點.
(1)求證:平面平面;
(2)若, , ,異面直線與所成角的余弦值為,求的值.
【答案】(1)見解析;(2)或
【解析】試題分析:(1)根據(jù), , 為的中點,推出四邊形為平行四邊形,再由,推出,結合平面平面,即可證平面,從而得證平面平面;(2)根據(jù)題設條件易證平面,以為原點分別以、、為軸、軸、軸的正方向建立空間直角坐標系,設, ,化簡可得,再根據(jù)異面直線與所成角的余弦值為,列出方程,解得即可得出的值.
試題解析:(1)證明:∵, , 為的中點,
∴四邊形為平行四邊形
∴.
∵
∴,即.
又∵平面平面,且平面平面.
∴平面
∵平面
∴平面平面.
(2)∵, 為的中點
∴.
∵平面平面,且平面平面.
∴平面.
以為原點分別以、、為軸、軸、軸的正方向建立空間直角坐標系,則, , , , ,設.
∴, , .
由是上的點,設,化簡得.
設異面直線與所成角為,則.
∴,計算得或,故或.
科目:高中數(shù)學 來源: 題型:
【題目】下表數(shù)據(jù)為某地區(qū)某種農產品的年產量x(單位:噸)及對應銷售價格y(單位:千元/噸) .
x | 1 | 2 | 3 | 4 | 5 |
y | 70 | 65 | 55 | 38 | 22 |
(1)若y與x有較強的線性相關關系,根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程.
(2)若該農產品每噸的成本為13.1千元,假設該農產品可全部賣出,利用上問所求的回歸方程,預測當年產量為多少噸時,年利潤Z最大?
(參考公式:回歸直線方程為,,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù)有下述四個結論:①若,則;②的圖象關于點對稱;③函數(shù)在上單調遞增;④的圖象向右平移個單位長度后所得圖象關于軸對稱.其中所有正確結論的編號是( )
A.①②④B.①②C.③④D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某車間租賃甲、乙兩種設備生產A,B兩類產品,甲種設備每天能生產A類產品8件和B類產品15件,乙種設備每天能生產A類產品10件和B類產品25件,已知設備甲每天的租賃費300元,設備乙每天的租賃費400元,現(xiàn)車間至少要生產A類產品100件,B類產品200件,所需租賃費最少為__元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,已知曲線,將曲線上的點向左平移一個單位,然后縱坐標不變,橫坐標軸伸長到原來的2倍,得到曲線,又已知直線(是參數(shù)),且直線與曲線交于兩點.
(I)求曲線的直角坐標方程,并說明它是什么曲線;
(II)設定點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學和英語是考生的必考科目,考生還須從物理、化學、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目.若一個學生從六個科目中選出了三個科目作為選考科目,則稱該學生的選考方案確定;否則,稱該學生選考方案待確定.例如,學生甲選擇“物理、化學和生物”三個選考科目,則學生甲的選考方案確定,“物理、化學和生物”為其選考方案.
某學校為了解高一年級420名學生選考科目的意向,隨機選取30名學生進行了一次調查,統(tǒng)計選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學 | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
選考方案待確定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 1 | 0 | 0 | 求的分布列及數(shù)學期望. |