5.復(fù)數(shù)z滿足:(3-4i)z=1+2i,則z=( 。
A.$-\frac{1}{5}+\frac{2}{5}i$B.$\frac{1}{5}-\frac{2}{5}i$C.$-\frac{1}{5}-\frac{2}{5}i$D.$\frac{1}{5}+\frac{2}{5}i$

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:∵(3-4i)z=1+2i,∴(3+4i)(3-4i)z=(3+4i)(1+2i),∴25z=-5+10i,
則z=-$\frac{1}{5}$+$\frac{2}{5}$i.
故選:A.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.一個(gè)三角形的兩邊長是方程2x2-$\sqrt{k}$x+2=0的兩根,第三邊長為2,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-3,k),$\overrightarrow{a}$•(2$\overrightarrow{a}$-$\overrightarrow$)=0,則實(shí)數(shù)k的值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=ln({1+2x})+\frac{m}{1+2x}({m∈R})$.
(Ⅰ)若函數(shù)f(x)的圖象在x軸上方,求m的取值范圍;
(Ⅱ)若對任意的正整數(shù)n都有${(1+\frac{2}{n})^{n-a}}≥{e^2}$成立,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知點(diǎn)A、B的坐標(biāo)分別為(2,0)、(-2,0),直線AT、BT交于點(diǎn)T,且它們的斜率之積為常數(shù)-λ(λ>0,λ≠1),點(diǎn)T的軌跡以及A、B兩點(diǎn)構(gòu)成曲線C.
(1)求曲線C的方程,并求其焦點(diǎn)坐標(biāo);
(2)若0<λ<1,且曲線C上的點(diǎn)到其焦點(diǎn)的最近距離為1.設(shè)直線l:y=k(x-1)交曲線C于E、F兩點(diǎn),交x軸于Q點(diǎn).直線AE、AF分別交直線x=3于點(diǎn)N、M.記線段MN的中點(diǎn)為P,直線PQ的斜率為k′.求證:k•k′為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.方程10sinx=x的根的個(gè)數(shù)是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若f(x)=sinα-cosx,則f′(x)等于( 。
A.sinxB.cosxC.cosα+sinxD.2sinα+cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)n∈N*,函數(shù)f(x)=$\frac{lnx}{{x}^{n}}$,函數(shù)g(x)=$\frac{{e}^{x}}{{x}^{n}}$,(x>0)
(1)當(dāng)n=1時(shí),寫出函數(shù)y=f(x)的零點(diǎn)個(gè)數(shù);
(2)若函數(shù) y=f(x)與函數(shù) y=g(x)的圖象分別位于直線y=1的兩側(cè),求n的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某公司所生產(chǎn)的一款設(shè)備的維修費(fèi)用y(單位:萬元)和使用年限x(單位:年)之間的關(guān)系如表所示,由資料可知y對x呈線性相關(guān)關(guān)系,
x23456
y2238556570
(Ⅰ)求線性回歸方程;
(Ⅱ)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

同步練習(xí)冊答案