9.已知直線l的斜率為2,且在y軸上的截距為1,則直線l的方程為y=2x+1.

分析 根據(jù)斜截式公式寫出直線l的方程即可.

解答 解:直線l的斜率為k=2,且在y軸上的截距為b=1,
所以直線l的方程為y=2x+1.
故答案為:y=2x+1.

點評 本題考查了直線方程的應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.(1)已知A${\;}_{n}^{3}$=6C${\;}_{n}^{2}$,求n的值;
(2)求二項式(1-2x)4的展開式中第4項的系數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象如圖所示,為了得到g(x)=Acosωx的圖象,可以將f(x)的圖象( 。
A.向左平移$\frac{π}{12}$個單位長度B.向左平移$\frac{π}{3}$個單位長度
C.向右平移$\frac{π}{6}$個單位長度D.向右平移$\frac{5π}{12}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知等比數(shù)列{an}滿足,a2=3,a5=81.
(1)求數(shù)列{an}的通項公式;
(2)設bn=log3an,求{bn}的前n項和為Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.直線y=x+1的傾斜角為( 。
A.1B.-1C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,四棱錐P-ABCD中,底面ABCD為矩形,E為PD的中點.
(1)求證:PB∥平面AEC;
(2)若PA⊥平面ABCD,PA=AD,求證:平面AEC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.(1+$\sqrt{x}$)6(1$-\sqrt{x}$)6的展開式中x的系數(shù)為-6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.閱讀如圖的程序框圖,運行相應的程序,則輸出a的值是9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=mln(x+1),g(x)=$\frac{x}{x+1}({x>-1})$.
(1)當m=1時,求函數(shù)y=f(x)在點(0,f(0))處的切線方程.
(1)討論函數(shù)F(x)=f(x)-g(x)在(-1,+∞)上的單調性;
(2)若y=f(x)與y=g(x)的圖象有且僅有一條公切線,試求實數(shù)m的值.

查看答案和解析>>

同步練習冊答案