6.雙曲線(xiàn)5x2-4y2+60=0的焦點(diǎn)坐標(biāo)為(  )
A.(±3$\sqrt{3}$,0)B.(±$\sqrt{3}$,0)C.(0,±3$\sqrt{3}$)D.(0,±$\sqrt{3}$)

分析 利用雙曲線(xiàn)方程求出雙曲線(xiàn)的幾何量,即可得到結(jié)果.

解答 解:雙曲線(xiàn)C:5x2-4y2+60=0的標(biāo)準(zhǔn)方程為:$\frac{{y}^{2}}{15}-\frac{{x}^{2}}{12}=1$,焦點(diǎn)坐標(biāo)在y軸上,
可得a=$\sqrt{15}$,b=$\sqrt{12}$,c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{27}$=3$\sqrt{3}$.
雙曲線(xiàn)的焦點(diǎn)坐標(biāo):(0,$±3\sqrt{3}$),
故選:C.

點(diǎn)評(píng) 本題考查雙曲線(xiàn)的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知直線(xiàn)3x+4y-4=0與直線(xiàn)6x+my+14=0平行,則它們之間的距離是( 。
A.$\frac{17}{10}$B.$\frac{11}{5}$C.8D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)y=log${\;}_{\frac{1}{3}}$(-x2+2x+3)的單調(diào)遞減區(qū)間為(-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,曲線(xiàn)$C:\frac{x^2}{m}+\frac{y^2}{n}=1(m>0,n>0)$與正方形L:|x|+|y|=4的邊界相切.
(1)求m+n的值;
(2)設(shè)直線(xiàn)l:y=x+b交曲線(xiàn)C于A,B,交L于C,D,是否存在的這樣的曲線(xiàn)C,使得|CA|,|AB|,|BD|成等差數(shù)列?若存在,求出實(shí)數(shù)b的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知O為△ABC外接圓的圓心,$|\overrightarrow{AB}|=3$,$|\overrightarrow{AC}|=5$,則$\overrightarrow{AO}•\overrightarrow{BC}$=( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知雙曲線(xiàn)$\frac{x^2}{16}-\frac{y^2}{9}=1$,過(guò)右焦點(diǎn)F2作雙曲線(xiàn)的弦AB,且|AB|=5,設(shè)該雙曲線(xiàn)的另一焦點(diǎn)為F1,求△ABF1的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.定義在R上的奇函數(shù)f(x)的圖象關(guān)于直線(xiàn)x=2對(duì)稱(chēng),且x∈[0,2]時(shí)f(x)滿(mǎn)足對(duì)任意的x1,x2∈[0,2]恒有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0,則( 。
A.f(3)<f(-1)<f(6)B.f(-1)<f(3)<f(6)C.f(6)<f(3)<f(-1)D.f(6)<f(-1)<f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合M=N={x∈N|0≤x≤3},定義函數(shù)f:M→N,且以AC為底邊的等腰△ABC的頂點(diǎn)坐標(biāo)分別為A(0,f(0)),B(1,f(1)),C(2,f(2)),則在所有滿(mǎn)足條件的等腰△ABC中任取一個(gè),取到腰長(zhǎng)為$\sqrt{10}$的等腰三角形的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到如表數(shù)據(jù):
單價(jià)x(元)88.28.48.68.89
銷(xiāo)量y(件)908483807568
(1)求回歸直線(xiàn)方程$\widehat{y}$=bx+a,a=$\overline{y}$-b$\overline{x}$;
(2)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷(xiāo)售收入-成本)
求線(xiàn)性回歸方程系數(shù)公式b=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案