已知函數(shù)f(x)=sin(2x+φ),其中φ為實數(shù),若|f(x)≤|f(
π
6
)|對x∈R恒成立,且f(
π
2
)>f(π),則f(x)的單調(diào)遞增區(qū)間是(  )
A、[kπ-
π
3
,kπ+
π
6
](k∈Z)
B、[kπ,kπ+
π
2
](k∈Z)
C、[kπ+
π
6
,kπ+
3
](k∈Z)
D、[kπ-
π
2
,kπ](k∈Z)
分析:由若f(x)≤|f(
π
6
)|
對x∈R恒成立,結(jié)合函數(shù)最值的定義,我們易得f(
π
6
)等于函數(shù)的最大值或最小值,由此可以確定滿足條件的初相角φ的值,結(jié)合f(
π
2
)>f(π)
,易求出滿足條件的具體的φ值,然后根據(jù)正弦型函數(shù)單調(diào)區(qū)間的求法,即可得到答案.
解答:解:若f(x)≤|f(
π
6
)|
對x∈R恒成立,
則f(
π
6
)等于函數(shù)的最大值或最小值
即2×
π
6
+φ=kπ+
π
2
,k∈Z
則φ=kπ+
π
6
,k∈Z
f(
π
2
)>f(π)

即sinφ<0
令k=-1,此時φ=-
6
,滿足條件
令2x-
6
∈[2kπ-
π
2
,2kπ+
π
2
],k∈Z
解得x∈[kπ+
π
6
,kπ+
3
](k∈Z)

故選C
點評:本題考查的知識點是函數(shù)y=Asin(ωx+φ)的圖象變換,其中根據(jù)已知條件求出滿足條件的初相角φ的值,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+bsinx,當(dāng)x=
π
3
時,取得極小值
π
3
-
3

(1)求a,b的值;
(2)對任意x1,x2∈[-
π
3
,
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,試求實數(shù)m的取值范圍;
(3)設(shè)直線l:y=g(x),曲線S:y=F(x),若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有g(shù)(x)≥F(x),則稱直線l與曲線S的“上夾線”.觀察下圖:

根據(jù)上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并作適當(dāng)?shù)恼f明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-blnx在(1,2]是增函數(shù),g(x)=x-b
x
在(0,1)為減函數(shù).
(1)求b的值;
(2)設(shè)函數(shù)φ(x)=2ax-
1
x2
是區(qū)間(0,1]上的增函數(shù),且對于(0,1]內(nèi)的任意兩個變量s、t,f(s)≥?(t)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函數(shù)f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的對邊分別為a、b、c,滿足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1
,
①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
 t
(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標方程;
②設(shè)點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數(shù)f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關(guān)于x的不等式f(x)≥a2-a在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
2x
+xlnx
,g(x)=x3-x2-x-1.
(1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求滿足該不等式的最大整數(shù)M;
(2)如果對任意的s,t∈[
1
3
,2],都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案