橢圓上的點(diǎn)M到焦點(diǎn)F1的距離是2,N是MF1的中點(diǎn),則|ON|為(     )

 A.4              B.2            C.8             D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)點(diǎn)A、B分別是橢圓
x2
36
+
y2
20
=1長(zhǎng)軸的左、右焦點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn).點(diǎn)P在橢圓上,且位于x軸上方,PA⊥PF.
(1)求P點(diǎn)的坐標(biāo);
(2)設(shè)M是橢圓長(zhǎng)軸AB上的一點(diǎn),M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)F在y軸的非負(fù)半軸上,點(diǎn)F到短軸端點(diǎn)的距離是4,橢圓上的點(diǎn)到焦點(diǎn)F距離的最大值是6.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程和離心率e;
(Ⅱ)若F′為焦點(diǎn)F關(guān)于直線y=
3
2
的對(duì)稱(chēng)點(diǎn),動(dòng)點(diǎn)M滿(mǎn)足
|MF|
|MF′|
=e,問(wèn)是否存在一個(gè)定點(diǎn)M,使M到點(diǎn)A的距離為定值?若存在,求出點(diǎn)A的坐標(biāo)及此定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)A、B分別是橢圓
x2
36
+
y2
20
=1
的長(zhǎng)軸的左、右端點(diǎn),F(xiàn)為橢圓的右焦點(diǎn),直線PF的方程為
3
x+y-3
2
=0
,且PA⊥PF.
(Ⅰ)求直線PA的方程;
(Ⅱ)設(shè)M是橢圓長(zhǎng)軸AB上的一點(diǎn),M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•淄博二模)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn)為F1、F2,短軸兩端點(diǎn)B1、B2,已知F1、F2、B1、B2四點(diǎn)共圓,且點(diǎn)N(0,3)到橢圓上的點(diǎn)最遠(yuǎn)距離為5
2

(1)求此時(shí)橢圓C的方程;
(2)設(shè)斜率為k(k≠0)的直線m與橢圓C相交于不同的兩點(diǎn)E、F,Q為EF的中點(diǎn),問(wèn)E、F兩點(diǎn)能否關(guān)于過(guò)點(diǎn)P(0,
3
3
)、Q的直線對(duì)稱(chēng)?若能,求出k的取值范圍;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)M到定點(diǎn)F(4,0)的距離和它到直線l:x=的距離的比是常數(shù),則點(diǎn)M的軌跡方程是     .橢圓+=1上的點(diǎn)M到焦點(diǎn)F(4,0)的距離和它到定直線l:x=的距離的比是      .

查看答案和解析>>

同步練習(xí)冊(cè)答案