【題目】如圖, 垂直于菱形所在平面,且 ,點分別為邊、的中點,點是線段上的動點.

(I)求證: ;

(II)當三棱錐的體積最大時,求點到面的距離.

【答案】(I)見解析;(II).

【解析】試題分析:(1)第(1)問,先證明平面,再證明.(2)第(2)問,先研究三棱錐的體積最大得到當點與點重合時取得最大值2,再把點到面的距離轉(zhuǎn)化成點D到平面MGH的距離,從而求出點到面的距離為.

試題解析:

(I)連接、相交于點.

平面,而平面,

∵四邊形為菱形,∴

,∴平面

、分別為的中點,∴,

平面,而平面,∴

(II)菱形中, ,得.

,

平面,即平面,

顯然,當點與點重合時, 取得最大值2,此時

, ,則

中點,所以點到平面的距離等于D點到平面的距離,

,求得

到平面的距離為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】求下列函數(shù)的值域和單調(diào)區(qū)間:

1;

2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,直線過點且傾斜角為.

(1)求曲線的直角坐標方程和直線的參數(shù)方程;

(2)設直線與曲線交于, 兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:在三棱錐中,是直角三角形,,點分別為的中點.

(Ⅰ)求證:;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 M是拋物線Cy2=2pxp0)上一點,F是拋物線焦點, =60°,|FM|=4

1)求拋物線C方程;

2D﹣1,0),過F的直線l交拋物線CA、B兩點,以F為圓心的圓F與直線AD相切,試判斷并證明圓F與直線BD的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)求函數(shù)圖像在處的切線方程;

2)證明:;

3)若不等式對于任意的均成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是奇函數(shù)(其中

1)求實數(shù)m的值;

2)已知關于x的方程在區(qū)間上有實數(shù)解,求實數(shù)k的取值范圍;

3)當時,的值域是,求實數(shù)na的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式的解集為.

1)求;(2)解關于的不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn,對任意nN*總有2Snan2+n,且anan+1.若對任意nN*,θR,不等式λn+2)恒成立,求實數(shù)λ的最小值( )

A.1B.2C.1D.

查看答案和解析>>

同步練習冊答案