設(shè)A,B,C為單位圓O上不同的三點(diǎn),則點(diǎn)集A={(x,y)|
OC
=x
OA
+y
OB
,0<x<2,0<y<2}
所對(duì)應(yīng)的平面區(qū)域的面積為( 。
A、1
B、
3
2
C、2
D、
5
2
分析:利用數(shù)量積的性質(zhì)將
OC
=x
OA
+y
OB
兩邊平方,再利用已知|
OA
|=|
OB
|=|
OC
|=1
,化為
1=x2+y2+2xycos∠AOB,由于0<x<2,0<y<2.從而由余弦定理可知x、y、1可以構(gòu)成三角形,且∠AOB不是0°或180°.得到約束條件,畫出可行域即可得出.
解答:精英家教網(wǎng)解:將
OC
=x
OA
+y
OB
兩邊平方得:
OC
2
=x2
OA
2
+y2
OB
2
+2xy
OA
OB
cos∠AOB

|
OA
|=|
OB
|=|
OC
|=1
,
∴1=x2+y2+2xycos∠AOB,
∵0<x<2,0<y<2.
從而由余弦定理可知x、y、1可以構(gòu)成三角形,且∠AOB不是0°或180°.
于是有:
|x|+|y|≥1
|x|+1≥|y|
|y|+1≥|x|
0<x<2,0<y<2
,化為
x+y≥1
x+1≥y
y+1≥x
0<x<2,0<y<2

畫出平面區(qū)域,結(jié)合圖形可知約束條件表示的圖形為陰影區(qū)域內(nèi),
∴表示的平面區(qū)域的面積是4-3×
1
2
=
5
2

故答案為:
5
2
點(diǎn)評(píng):本題考查了數(shù)量積的性質(zhì)、余弦定理、構(gòu)成三角形的條件、線性規(guī)劃問(wèn)題,考查了問(wèn)題的轉(zhuǎn)化能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A,B,C三點(diǎn)對(duì)應(yīng)的復(fù)數(shù)分別為z1,z2,z3滿足z1+z2+z3=0,且|z1|=|z2|=|z3|=1
(1)證明:△ABC是內(nèi)接于單位圓的正三角形;
(2)求SABC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計(jì)20分.請(qǐng)把答案寫在答題紙的指定區(qū)域內(nèi).
A.(選修4-1:幾何證明選講)
如圖,圓O的直徑AB=8,C為圓周上一點(diǎn),BC=4,過(guò)C作圓的切線l,過(guò)A作直線l的垂線AD,D為垂足,AD與圓O交于點(diǎn)E,求線段AE的長(zhǎng).
B.(選修4-2:矩陣與變換)
已知二階矩陣A有特征值λ1=3及其對(duì)應(yīng)的一個(gè)特征向量α1=
1
1
,特征值λ2=-1及其對(duì)應(yīng)的一個(gè)特征向量α2=
1
-1
,求矩陣A的逆矩陣A-1
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系(兩種坐標(biāo)系中取相同的單位長(zhǎng)度),已知點(diǎn)A的直角坐標(biāo)為(-2,6),點(diǎn)B的極坐標(biāo)為(4,
π
2
)
,直線l過(guò)點(diǎn)A且傾斜角為
π
4
,圓C以點(diǎn)B為圓心,4為半徑,試求直線l的參數(shù)方程和圓C的極坐標(biāo)方程.
D.(選修4-5:不等式選講)
設(shè)a,b,c,d都是正數(shù),且x=
a2+b2
,y=
c2+d2
.求證:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A,B,C為單位圓O上不同的三點(diǎn),則點(diǎn)集A={(x,y)|
OC
=x
OA
+y
OB
,(0<x<2,0<y<2)}所對(duì)應(yīng)的平面區(qū)域的面積為
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第107-110課時(shí)):第十四章 復(fù)數(shù)-復(fù)數(shù)的代數(shù)形式及其運(yùn)算(解析版) 題型:解答題

設(shè)A,B,C三點(diǎn)對(duì)應(yīng)的復(fù)數(shù)分別為z1,z2,z3滿足z1+z2+z3=0,且|z1|=|z2|=|z3|=1
(1)證明:△ABC是內(nèi)接于單位圓的正三角形;
(2)求SABC;

查看答案和解析>>

同步練習(xí)冊(cè)答案