曲線在點處的切線方程為

 

【解析】

試題分析:求導(dǎo)函數(shù)知,則此時的切線斜率,故在的切線方程為

考點:導(dǎo)數(shù)的幾何意義.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆山東省菏澤市高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

某校為了探索一種新的教學(xué)模式,進(jìn)行了一項課題實驗,甲班為實驗班,乙班為對比班,甲乙兩班的人數(shù)均為50人,一年后對兩班進(jìn)行測試,測試成績的分組區(qū)間為[80,90)、[90,100)、[100,110)、[110,120)、[120,130),由此得到兩個班測試成績的頻率分布直方圖:

(Ⅰ)完成下面2×2列聯(lián)表,你能有97.5%的把握認(rèn)為“這兩個班在這次測試中成績的差異與實施課題實驗有關(guān)”嗎?并說明理由;

 

成績小于100分

成績不小于100分

合計

甲班

a= _________

b= _________

50

乙班

c=24

d=26

50

合計

e= _________

f= _________

100

附:K2=,其中n=a+b+c+d

P(K2≥k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.204

6.635

7.879

10.828

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)上是減函數(shù),求實數(shù)a的最小值;

(3)若,使成立,求實數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

5名應(yīng)屆畢業(yè)生報考三所高校,每人報且僅報一所院校,則不同的報名方法的種數(shù)是(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)設(shè)A>0,A≠1,函數(shù)有最大值,

求函數(shù)的單調(diào)區(qū)間.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)是奇函數(shù),則使f(x)<0的x的取值范圍是(  ).

A.(-1,0) B.(0, 1)

C.(-∞,0) D.(-∞,0)∪(1,+∞)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的離心率為,為橢圓在軸正半軸上的焦點,、兩點在橢圓上,且,定點.

(1)求證:當(dāng);

(2)若當(dāng)時有,求橢圓的方程;

(3)在(2)的橢圓中,當(dāng)、兩點在橢圓上運(yùn)動時,試判斷 是否有最大值,若存在,求出最大值,并求出這時兩點所在直線方程,若不存在,給出理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知點在直線的兩側(cè),則的取值范圍是( )

A. B. C. D.不確定

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中檢測理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知,,三角形的面積為( )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊答案