11.將極坐標(biāo)(4,$\frac{π}{3}$)化為直角坐標(biāo)是(  )
A.(2,2$\sqrt{2}$)B.(2$\sqrt{3}$,2)C.(2,2$\sqrt{3}$)D.(2$\sqrt{2}$,2)

分析 利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可得出.

解答 解:x=4cos$\frac{π}{3}$=2,y=4sin$\frac{π}{3}$=2$\sqrt{3}$.
∴直角坐標(biāo)為(2,2$\sqrt{3}$).
故選:C.

點(diǎn)評 本題考查了極坐標(biāo)化為直角坐標(biāo)的方法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線與y軸的交點(diǎn)坐標(biāo)為(0,-n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,F(xiàn)1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),經(jīng)過右焦點(diǎn)F2的直線與雙曲線C的右支交于P,Q兩點(diǎn),且|PF2|=2|F2Q|,PQ⊥F1Q,則雙曲線C的離心率是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{10}}{2}$D.$\frac{\sqrt{17}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,為了得到g(x)=sin(2x+$\frac{π}{2}$)的圖象,則只需將f(x)的圖象( 。
A.向右平移$\frac{π}{6}$個單位長度B.向右平移$\frac{π}{12}$個單位長度
C.向左平移$\frac{π}{6}$個單位長度D.向左平移$\frac{π}{12}$個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若某流程圖如圖所示,則該程序運(yùn)行后輸出的結(jié)果是$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\frac{1}{2}$(sinx+cosx)-$\frac{1}{2}$|sinx-cosx|+1,則f(x)的值域是(  )
A.[0,2]B.[1-$\frac{\sqrt{2}}{2}$,2]C.[0,1-$\frac{\sqrt{2}}{2}$]D.[0,1+$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=3sin(2x+$\frac{π}{6}$)+2圖象的一條對稱軸方程是( 。
A.x=-$\frac{π}{12}$B.x=0C.x=$\frac{2}{3}$πD.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線kx2-y2=1的一條漸近線與直線3x-6y-2016=0平行,則這條雙曲線的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{3}}{2}$C.4$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知tanα=3,則$\frac{sinα+2cosα}{sinα-2cosα}$的值為(  )
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊答案