分析 先求出其導(dǎo)函數(shù),把x=1代入,求出切線的斜率,進而得到切線方程,令x=0,可得切線與y軸的交點坐標(biāo).
解答 解:因為y=xn+1,
故y′=(n+1)xn,
所以x=1時,y′=n+1,
則直線方程為y-1=(n+1)(x-1),
令x=0,則y=1-(n+1)=-n,
故切線與y軸的交點為( 0,-n),
故答案為:(0,-n).
點評 當(dāng)題目中遇到求曲線C在點A(m,n)的切線方程時,其處理步驟為:①判斷A點是否在C上②求出C對應(yīng)函數(shù)的導(dǎo)函數(shù)③求出過A點的切線的斜率④代入點斜式方程,求出直線的方程.同時考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (-∞,-1)∪(0,+∞) | C. | (-∞,0)∪(0,+∞) | D. | (-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬(p1∨p2) | B. | (¬p2)∨p3 | C. | p3∧(¬p4) | D. | p2∧p4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2$\sqrt{3}$ | C. | 2 | D. | $\frac{4\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,2$\sqrt{2}$) | B. | (2$\sqrt{3}$,2) | C. | (2,2$\sqrt{3}$) | D. | (2$\sqrt{2}$,2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com