【題目】在直角坐標(biāo)系中,曲線(xiàn)C的參數(shù)方程為(為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為,且直線(xiàn)與曲線(xiàn)C有兩個(gè)不同的交點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)已知M為曲線(xiàn)C上一點(diǎn),且曲線(xiàn)C在點(diǎn)M處的切線(xiàn)與直線(xiàn)垂直,求點(diǎn)M的直角坐標(biāo).
【答案】(1);(2)或
【解析】
(1)分別求出曲線(xiàn)C與直線(xiàn)的直角坐標(biāo)方程,由點(diǎn)到直線(xiàn)的距離公式即可得解;
(2)設(shè)點(diǎn),由題意可得即,結(jié)合同角三角函數(shù)的平方關(guān)系求得或后即可得解.
(1)消參可得曲線(xiàn)C的普通方程為,可得曲線(xiàn)C是圓心為,半徑為的圓,
直線(xiàn)的直角坐標(biāo)方程為,
由直線(xiàn)與圓C有兩個(gè)交點(diǎn)知,解得;
(2)設(shè)圓C的圓心為,由圓C的參數(shù)方程可設(shè)點(diǎn),由題知,∴,
又,解得,或,
故點(diǎn)M的直角坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐中,與均為等腰直角三角形,且,,為上一點(diǎn),且平面.
(1)求證:;
(2)過(guò)作一平面分別交, , 于,,,若四邊形為平行四邊形,求多面體的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)為提高生產(chǎn)效率,需引進(jìn)一條新的生產(chǎn)線(xiàn)投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線(xiàn)可供選擇,生產(chǎn)線(xiàn)①:有A,B兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.02,0.03.若兩道工序都沒(méi)有出現(xiàn)故障,則生產(chǎn)成本為15萬(wàn)元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬(wàn)元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬(wàn)元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬(wàn)元.生產(chǎn)線(xiàn)②:有a,b兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.01.若兩道工序都沒(méi)有出現(xiàn)故障,則生產(chǎn)成本為14萬(wàn)元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬(wàn)元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬(wàn)元;若a,b兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬(wàn)元.
(1)若選擇生產(chǎn)線(xiàn)①,求生產(chǎn)成本恰好為18萬(wàn)元的概率;
(2)為最大限度節(jié)約生產(chǎn)成本,你會(huì)給工廠(chǎng)建議選擇哪條生產(chǎn)線(xiàn)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐中,,,平面平面,點(diǎn)在棱上.
若為的中點(diǎn),證明:.
若與平面所成角的正弦值為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的導(dǎo)函數(shù)零點(diǎn)的個(gè)數(shù);
(2)若的最小值為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|﹣|x﹣5|.
(1)當(dāng)a=2時(shí),求證:﹣3≤f(x)≤3;
(2)若關(guān)于x的不等式f(x)≤x2﹣8x+20在R恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知角始邊與軸的非負(fù)半軸重合,與圓相交于點(diǎn),終邊與圓相交于點(diǎn),點(diǎn)在軸上的射影為, 的面積為,函數(shù)的圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某外賣(mài)平臺(tái)為提高外賣(mài)配送效率,針對(duì)外賣(mài)配送業(yè)務(wù)提出了兩種新的配送方案,為比較兩種配送方案的效率,共選取50名外賣(mài)騎手,并將他們隨機(jī)分成兩組,每組25人,第一組騎手用甲配送方案,第二組騎手用乙配送方案.根據(jù)騎手在相同時(shí)間內(nèi)完成配送訂單的數(shù)量(單位:?jiǎn)危├L制了如下莖葉圖:
(1)根據(jù)莖葉圖,求各組內(nèi)25位騎手完成訂單數(shù)的中位數(shù),已知用甲配送方案的25位騎手完成訂單數(shù)的平均數(shù)為52,結(jié)合中位數(shù)與平均數(shù)判斷哪種配送方案的效率更高,并說(shuō)明理由;
(2)設(shè)所有50名騎手在相同時(shí)間內(nèi)完成訂單數(shù)的平均數(shù),將完成訂單數(shù)超過(guò)記為“優(yōu)秀”,不超過(guò)記為“一般”,然后將騎手的對(duì)應(yīng)人數(shù)填入下面列聯(lián)表;
優(yōu)秀 | 一般 | |
甲配送方案 | ||
乙配送方案 |
(3)根據(jù)(2)中的列聯(lián)表,判斷能否有的把握認(rèn)為兩種配送方案的效率有差異.
附:,其中.
0.05 | 0.010 | 0.005 | |
3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)與定點(diǎn)的距離和它到直線(xiàn)的距離的比是常數(shù).
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)過(guò)坐標(biāo)原點(diǎn)的直線(xiàn)交軌跡于,兩點(diǎn),軌跡上異于,的點(diǎn)滿(mǎn)足直線(xiàn)的斜率為.
(。┳C明:直線(xiàn)與的斜率之積為定值;
(ⅱ)求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com