分析 根據(jù)三視圖知幾何體是三棱錐為方體一部分,畫出直觀圖,由長方體的性質求出該四面體外接球的半徑,由球的表面積公式求出答案.
解答 解:根據(jù)三視圖知幾何體是:
三棱錐A-BCD為長方體一部分,直觀圖如圖所示:
且長方體的長、寬、高是2、1、2,
∴該四面體外接球與正方體的相同,
設該四面體外接球的半徑是R,
由長方體的性質可得,2R=$\sqrt{{2}^{2}+{1}^{2}+{2}^{2}}$=3,則R=$\frac{3}{2}$,
∴該四面體外接球的表面積S=4πR2=9π,
故答案為:9π.
點評 本題考查由三視圖求幾何體外接球的表面積,在三視圖與直觀圖轉化過程中,以一個長方體為載體是很好的方式,使得作圖更直觀,考查空間想象能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-3,1) | B. | (-3,2) | C. | (-1,1) | D. | (-1,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{9}{2}$ | B. | 9+3$\sqrt{5}$ | C. | 18 | D. | 12+3$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 1 | C. | $\frac{5}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com