(文做)設
a
=(sinx,
5
4
),
b
=(
1
5
,-
1
2
cosx)
,且
a
b
,x∈(
π
2
,π)
,則x=( 。
A、-
π
3
3
B、-
π
4
4
C、
3
D、
4
考點:三角函數(shù)的化簡求值,平面向量共線(平行)的坐標表示
專題:三角函數(shù)的求值
分析:通過向量平行的充要條件,化簡方程求解即可.
解答: 解:設
a
=(sinx,
5
4
),
b
=(
1
5
,-
1
2
cosx)
,且
a
b

可得
5
4
×
1
5
=-
1
2
sinxcosx
,
所以sin2x=-1,x∈(
π
2
,π)

所以2x=
2
,x=
4

故選:D.
點評:本題考查向量的共線,三角函數(shù)的化簡求值,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若f(x)=
3
cos2ωx-sinωxcosωx-
3
2
(ω>0)的圖象與直線y=m(m>0)相切,并且切點橫坐標依次成公差為π的等差數(shù)列.
(1)求ω和m的值;
(2)在△ABC中,a、b、c分別是∠A、∠B、∠C的對邊.若(
A
2
,0)是函數(shù)f(x)圖象的一個對稱中心,且a=4,求△ABC外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(1,2)在指數(shù)函數(shù)f(x)的圖象上,則f(4)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知向量
m
=(
3
sin
x
4
,1),
n
=(cos
x
4
,cos2
x
4
),記f(x)=
m
n

(Ⅰ)若f(x)=1,求cos(
3
-x)的值;
(Ⅱ)在銳角△ABC申,角A,B,C的對邊分別是a,b,c,且滿足(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x),當x∈(0,+∞)時的解析式為y=x2+2.
(1)求這個函數(shù)在R上的解析式;
(2)畫出函數(shù)的圖象并直接寫出函數(shù)在R上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ax-2+loga(x-1)(a>0且a≠1),在x∈[2,3]上的最大值與最小值之和為a,則a等于( 。
A、4
B、
1
4
C、2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|1≤x≤7},B={x|-2m+1<x<m},全集為實數(shù)集R.
(1)若m=5,求A∪B,(∁RA)∩B;
(2)若A∩B=A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三個數(shù)a=0.22,b=log202,c=20.1之間的大小關系是( 。
A、a<c<b
B、a<b<c
C、b<a<c
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知四棱錐P-ABCD中,已知PA⊥底面ABCD,且底面ABCD為矩形,則下列結論中錯誤的是( 。
A、平面PAB⊥平面PAD
B、平面PAB⊥平面PBC
C、平面PBC⊥平面PCD
D、平面PCD⊥平面PAD

查看答案和解析>>

同步練習冊答案