已知,, 
(1)求函數(shù)的解析式,并求它的單調(diào)遞增區(qū)間;
(2)若有四個(gè)不相等的實(shí)數(shù)根,求的取值范圍。

(1),遞增區(qū)間是;(2)

解析試題分析:(1)由于都是分段函數(shù),故在求時(shí),要注意兩個(gè)函數(shù)中不同的自變量的取值集合,單調(diào)區(qū)間當(dāng)然要每段中都要考察;(2)方程有幾個(gè)實(shí)根時(shí),求參數(shù)的范圍,一般可利用函數(shù)的圖象求解.方程的解可以看作是函數(shù)的圖象與直線的交點(diǎn)的橫坐標(biāo),從而方程有4個(gè)解等價(jià)于函數(shù)的圖象與直線有4個(gè)交點(diǎn).
試題解析:(1)               5分
遞增區(qū)間是2分
(2)如圖所求,作出函數(shù)函數(shù)的圖象與直線               4分

由圖可得有四個(gè)不相等的實(shí)數(shù)根時(shí)的取值范圍是              3分
考點(diǎn):(1)分段函數(shù)的解析式,單調(diào)區(qū)間;(2)方程解的個(gè)數(shù)問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(其中是實(shí)數(shù)常數(shù),
(1)若,函數(shù)的圖像關(guān)于點(diǎn)(—1,3)成中心對(duì)稱,求的值;
(2)若函數(shù)滿足條件(1),且對(duì)任意,總有,求的取值范圍;
(3)若b=0,函數(shù)是奇函數(shù),,,且對(duì)任意時(shí),不等式恒成立,求負(fù)實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若,當(dāng)時(shí),求的取值范圍;
(2)若定義在上奇函數(shù)滿足,且當(dāng)時(shí),,求上的反函數(shù);
(3)若關(guān)于的不等式在區(qū)間上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)時(shí),車流速度是車流密度x的一次函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀察點(diǎn)的車輛數(shù),單位:輛/每小時(shí))可以達(dá)到最大,并求出最大值(精確到1輛/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),點(diǎn)、在函數(shù)的圖象上,
點(diǎn)在函數(shù)的圖象上,設(shè)
(1)求數(shù)列的通項(xiàng)公式;
(2)記,求數(shù)列的前項(xiàng)和為;
(3)已知,記數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)生產(chǎn)某種商品噸,此時(shí)所需生產(chǎn)費(fèi)用為()萬元,當(dāng)出售這種商品時(shí),每噸價(jià)格為萬元,這里為常數(shù),
(1)為了使這種商品的生產(chǎn)費(fèi)用平均每噸最低,那么這種商品的產(chǎn)量應(yīng)為多少噸?
(2)如果生產(chǎn)出來的商品能全部賣完,當(dāng)產(chǎn)量是120噸時(shí)企業(yè)利潤(rùn)最大,此時(shí)出售價(jià)格是每噸160萬元,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計(jì)算:(1);   (2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的定義域和值域;
(2)若有最小值-2,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)求的值;
(2)求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案