10.函數(shù)$y={log_a}({x^2}-5x-6)$,(0<a<1)的單調(diào)遞減區(qū)間是(6,+∞).

分析 求出原函數(shù)的定義域,分析內(nèi)函數(shù)t=x2-5x-6的單調(diào)性,由于外層函數(shù)y=logat 為減函數(shù),則內(nèi)層函數(shù)的增區(qū)間即為復合函數(shù)的減區(qū)間.

解答 解:令t=x2-5x-6,由x2-5x-6>0,得x<-1或x>6.
∴函數(shù)f(x)=log0.5(x2-2x)的定義域為(-1,0)∪(6,+∞),
當x∈(6,+∞)時,內(nèi)層函數(shù)t=x2-5x-6為增函數(shù),而外層函數(shù)y=logat 為減函數(shù),
∴函數(shù)f(x)=loga(x2-5x-6)的單調(diào)遞減區(qū)間是(6,+∞),
故答案為(6,+∞).

點評 本題考查了對數(shù)函數(shù)的單調(diào)區(qū)間,訓練了復合函數(shù)的單調(diào)區(qū)間的求法,復合函數(shù)的單調(diào)性滿足“同增異減”的原則,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.設$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是任意的非零向量,且相互不平行,則下面四個命題:
①$(\overrightarrow a•\overrightarrow b)\overrightarrow c-(\overrightarrow c•\overrightarrow a)\overrightarrow b=\overrightarrow 0$;
②$|{\overrightarrow a}|-|{\overrightarrow b}|<|{\overrightarrow a-\overrightarrow b}|$;
③$(\overrightarrow b•\overrightarrow c)\overrightarrow a-(\overrightarrow c•\overrightarrow a)\overrightarrow b$不與$\overrightarrow c$垂直;
④$(3\overrightarrow a+2\overrightarrow b)•(3\overrightarrow a-2\overrightarrow b)=9{|{\overrightarrow a}|^2}-4{|{\overrightarrow b}|^2}$.
其中是真命題的為(  )
A.①③B.②③C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知命題p:方程x2-2x+m=0有兩個不相等的實數(shù)根;命題q:對任意x∈[0,8],不等式log${\;}_{\frac{1}{3}}$(x+1)≥m2-3m恒成立.若“p或q”是真命題,“p且q”是假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$(x∈R).
(1)判斷函數(shù)f(x)的奇偶性;
(2)用定義判斷函數(shù)f(x)的單調(diào)性;
(3)解不等式f(1-m)+f(1-m2)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列函數(shù)中為偶函數(shù)的是( 。
A.y=sin|x|B.y=sin2xC.y=-sinxD.y=sinx+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=x2+1
(1)求f(a)-f(a+1)
(2)若f(x)=x+3,求x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sinx,sinx>cosx}\\{cosx,sinx≤cosx}\end{array}\right.$,關于f(x)的敘述
①最小正周期為2π
②有最大值1和最小值-1
③對稱軸為直線$x=kπ+\frac{π}{4}({k∈Z})$
④對稱中心為$({kπ+\frac{π}{4},0})(k∈Z)$
⑤在$[{\frac{π}{2},π}]$上單調(diào)遞減
其中正確的命題序號是①③⑤.(把所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設a=log${\;}_{\frac{2}{3}}$$\frac{3}{2}$,b=log32,c=2${\;}^{\frac{1}{3}}$,d=3${\;}^{\frac{1}{2}}$,則這四個數(shù)的大小關系是( 。
A.a<b<c<dB.a<c<d<bC.b<a<c<dD.b<a<d<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知直線m,n與平面α、β,給出下列命題:其中正確的是( 。
A.若m∥α,n⊥β且α⊥β,則m∥nB.若m∥α,n⊥α,則m⊥n
C.若m∥α,n∥β且α∥β,則m∥nD.若α⊥β,α∩β=n,n⊥m⇒n⊥β

查看答案和解析>>

同步練習冊答案