函數(shù)在區(qū)間上的值域?yàn)?    )
A.
B.
C.
D.
A

當(dāng)時(shí),f′(x)>0,,
∴f(x)是上的增函數(shù).
∴f(x)的最大值為
f(x)的最小值為
∴f(x)的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045051761694.png" style="vertical-align:middle;" />.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù),其中b≠0.
(1)當(dāng)b>時(shí),判斷函數(shù)在定義域上的單調(diào)性:
(2)求函數(shù)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),其中.
(1)若,求函數(shù)的極值點(diǎn);
(2)若在區(qū)間內(nèi)單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若對(duì)任意的都有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2013•浙江)已知a∈R,函數(shù)f(x)=2x3﹣3(a+1)x2+6ax
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)若|a|>1,求f(x)在閉區(qū)間[0,|2a|]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

f(x)=x3﹣3x2+2在區(qū)間[﹣1,1]上的最大值是( 。
A.﹣2B.0C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè),其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若曲線f(x)=ax3+ln x存在垂直于y軸的切線,則實(shí)數(shù)a的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知偶函數(shù)在區(qū)間上滿足,則滿足的取值范圍是
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案