【題目】已知a>0且滿足不等式22a+1>25a2
(1)求實(shí)數(shù)a的取值范圍.
(2)求不等式loga(3x+1)<loga(7﹣5x).
(3)若函數(shù)y=loga(2x﹣1)在區(qū)間[1,3]有最小值為﹣2,求實(shí)數(shù)a值.

【答案】
(1)解:∵22a+1>25a2

∴2a+1>5a﹣2,即3a<3,

∴a<1


(2)解:∵a>0,a<1,∴0<a<1,

∵loga(3x+1)<loga(7﹣5x).

∴等價(jià)為 ,

,

即不等式的解集為(


(3)解:∵0<a<1,

∴函數(shù)y=loga(2x﹣1)在區(qū)間[1,3]上為減函數(shù),

∴當(dāng)x=3時(shí),y有最小值為﹣2,

即loga5=﹣2,

∴a2= =5,

解得a=


【解析】(1)根據(jù)指數(shù)函數(shù)的單調(diào)性解不等式即可求實(shí)數(shù)a的取值范圍.(2)根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性求不等式loga(3x+1)<loga(7﹣5x).(3)根據(jù)復(fù)合函數(shù)的單調(diào)性以及對(duì)數(shù)的性質(zhì)即可求出a的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一家公司生產(chǎn)某種產(chǎn)品的年固定成本為6萬(wàn)元,每生產(chǎn)1千件需另投入2.9萬(wàn)元,設(shè)該公司一年內(nèi)生產(chǎn)該產(chǎn)品千件并全部銷售完,每千件的銷售收入為萬(wàn)元,且.

(1)寫出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

(2)求該公司生產(chǎn)這一產(chǎn)品的最大年利潤(rùn)及相應(yīng)的年產(chǎn)量.(年利潤(rùn)=年銷售收入-年總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

(1)設(shè), ,若函數(shù)存在零點(diǎn),求的取值范圍;

(2)若是偶函數(shù),設(shè),若函數(shù)的圖象只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log2(2x﹣1).
(1)求f(x)的定義域;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=loga(2x2+x)(a>0,a≠1)在區(qū)間(0, )內(nèi)恒有f(x)>0,則f(x)的單調(diào)遞增區(qū)間是(
A.(﹣∞,﹣
B.
C.
D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O:x2+y2=1和定點(diǎn)A(2,1),由O外一點(diǎn)P(a,b)向O引切線PQ,切點(diǎn)為Q,且滿足|PQ|=|PA|.

(1)求實(shí)數(shù)a,b間滿足的等量關(guān)系.

(2)求線段PQ長(zhǎng)的最小值.

(3)若以P為圓心所作的P與O有公共點(diǎn),試求半徑取最小值時(shí)P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=a4x﹣a2x+1+1﹣b(a>0)在區(qū)間[1,2]上有最大值9和最小值1
(1)求a,b的值;
(2)若不等式f(x)﹣k4x≥0在x∈[﹣1,1]上有解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2﹣3x﹣4≤0},B={x|x2﹣2mx+m2﹣9≤0},C={y|y=2x+b,x∈R}
(1)若A∩B=[0,4],求實(shí)數(shù)m的值;
(2)若A∩C=,求實(shí)數(shù)b的取值范圍;
(3)若A∪B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), 為自然對(duì)數(shù)的底數(shù).

(1)若函數(shù)的圖象在點(diǎn)處的切線方程為,求實(shí)數(shù), 的值;

(2)當(dāng)時(shí),若存在, ,使成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案