【題目】如圖,四棱錐中,平面,四邊形是直角梯形,其中,. ,.
(1)求異面直線與所成角的大小;
(2)若平面內(nèi)有一經(jīng)過點的曲線,該曲線上的任一動點都滿足與所成角的大小恰等于與所成角.試判斷曲線的形狀并說明理由;
(3)在平面內(nèi),設(shè)點是(2)題中的曲線在直角梯形內(nèi)部(包括邊界)的一段曲線上的動點,其中為曲線和的交點.以為圓心,為半徑的圓分別與梯形的邊、交于、兩點.當點在曲線段上運動時,試求圓半徑的范圍及的范圍.
【答案】(1);(2)雙曲線;(3),.
【解析】
試題分析:(1)借助題設(shè)條件建立空間直角坐標系運用向量的數(shù)量積公式求解;(2)在空間坐標系中借助題設(shè)建立方程探求;(3)依據(jù)題設(shè)建立函數(shù)關(guān)系,運用二次函數(shù)的知識及不等式的性質(zhì)等知識分析探求.
試題解析:
(1)如圖,以為原點,直線為軸、直線為軸、直線為軸,建立空間直角坐標系.于是有、,則有,又
則異面直線與所成角滿足,
所以,異面直線與所成角的大小為.
(2)如圖,以為原點,直線為軸、直線為軸、直線為軸,建立空間直角坐標系.設(shè)點,點、點、點,
則,,
則,
,
化簡整理得到,
則曲線是平面內(nèi)的雙曲線.
(3)解:在如圖所示的的坐標系中,因為、、,設(shè).則有,故的方程為,
代入雙曲線:的方程可得,,其中.
因為直線與雙曲線交于點,故.進而可得,即.故雙曲線在直角梯形內(nèi)部(包括邊界)的區(qū)域滿足,.又設(shè)為雙曲線上的動點,.
所以,
因為,所以當時,;
當時,.
而要使圓與、都有交點,則.
故滿足題意的圓的半徑取值范圍是.
因為,所以體積為.故問題可以轉(zhuǎn)化為研究的面積.又因為為直角,所以必為等腰直角三角形.
由前述,設(shè),則,
故其面積,所以.
于是,.
(當點運動到與點重合時,體積取得最大值;當點運動到橫坐標時,即長度最小時,體積取得最小值)
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線: ,焦點, 為坐標原點,直線(不垂直軸)過點且與拋物線交于兩點,直線與的斜率之積為.
(1)求拋物線的方程;
(2)若為線段的中點,射線交拋物線于點,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班50名學生在一次數(shù)學測試中,成績?nèi)拷橛?0與100之間,將測試結(jié)果按如下方式分成五組:第一組[50,60),第二組[60,70),…,第五組[90,100].如圖所示是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)若成績大于或等于60且小于80,認為合格,求該班在這次數(shù)學測試中成績合格的人數(shù);
(Ⅱ)從測試成績在[50,60)∪[90,100]內(nèi)的所有學生中隨機抽取兩名同學,設(shè)其測試成績分別為m、n,求事件“|m﹣n|>10”概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在上的奇函數(shù),當時,(其中,是自然對數(shù)的底數(shù),=2.71828…).
(Ⅰ)求的值;
(Ⅱ)若時,方程有實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2009年推出一種新型家用轎車,購買時費用為萬元,每年應交付保險費、養(yǎng)路費及汽油費共萬元,汽車的維修費為:第一年無維修費用,第二年為萬元,從第三年起,每年的維修費均比上一年增加萬元.
(1)設(shè)該輛轎車使用年的總費用(包括購買費用、保險費、養(yǎng)路費、汽油費及維修費)為,求的表達式;
(2)這種汽車使用多少年報廢最合算(即該車使用多少年,年平均費用最少)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為常數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當時,設(shè)的兩個極值點恰為的零點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)上的偶函數(shù),其圖象關(guān)于點對稱,且在區(qū)間上是單調(diào)函數(shù),則的值是( )
A. B. C. 或 D. 無法確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com